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A. Additional Experiment
Further evaluation on ms-Motion. To ensure a balanced evaluation and evaluate potential data bias in the ms-Motion
dataset, where videos in the 2-, 3-, and 4-shot categories are mutually exclusive, we create multiple versions of the same
video across different shot categories for further evaluation. Specifically, we randomly select 20 videos and create their 2-,
3-, and 4-shot versions, resulting in a total of 60 videos. We then evaluate SLAHMR [26], WHAM [28], GVHMR [29],
and our method on these videos. The results, presented in Tab. 8, follow the same evaluation pattern as those on the full
ms-Motion dataset in Tab. 1, which indicates the effectiveness of our proposed dataset in evaluating different human motion
recovery methods.

Methods 2-shot 3-shot 4-shot

PA.↓ WA.↓ RTE↓ ROE↓ Jitter↓ F.S.↓ PA.↓ WA.↓ RTE↓ ROE↓ Jitter↓ F.S.↓ PA.↓ WA.↓ RTE↓ ROE↓ Jitter↓ F.S.↓
SLAHMR [2023] 75.54 326.15 9.35 94.63 63.74 3.15 81.22 523.98 11.59 105.44 74.12 4.55 93.45 811.31 14.85 109.56 80.69 14.12
WHAM [2024] 65.14 339.85 4.65 81.12 25.29 2.82 83.10 501.29 7.82 89.88 25.85 3.05 100.20 801.63 5.97 94.36 27.29 3.98
GVHMR [2024] 66.18 234.96 5.82 92.13 35.77 4.72 72.63 359.99 6.42 97.45 35.63 5.85 90.52 588.40 9.02 96.75 31.66 9.52
Ours 33.96 109.72 2.12 66.58 33.49 1.69 40.12 131.39 3.94 68.33 31.82 3.01 42.64 165.23 4.32 69.15 32.22 3.52

Table 8. Quantitative results on ms-Motion (20). We select 20 videos from ms-Motion and generate 2-, 3-, and 4-shot versions for each,
yielding a total of 60 videos for evaluation. PA. and WA. means PA-MPJPE and WA-MPJPE respectively, while F.S. is Foot Sliding. The
results follow a similar trend to those on original ms-Motion, showcasing ms-Motion’s effectiveness in evaluating different HMR methods.



B. Masked DPVO Detailed Algorithm
In this section, we provide a detailed exposition of the algorithm underpinning our proposed Masked DPVO, as introduced
in the context of Comparison on Camera Trajectory Estimation in Sec. 5.4, building on the foundation of DPVO [76]. In
accordance with the principles of DPVO, a scene is conceptualized as a composition of camera poses G ∈ SE(3)N and a
collection of square image patches P derived from video frames. The inverse depth is denoted as d, while pixel coordinates
are represented by (x, y). Each patch Pk is modeled as a 4p2 homogeneous array, where p denotes the patch width, as
illustrated below,

Pk =


x
y
1
d

 , x,y,d ∈ R1×p2

. (6)

Let i, j represent the indices corresponding to frame i and frame j, respectively. The projection matrix Pkj, which maps the
patch Pk, extracted from frame i, to frame j, can then be expressed as follows,

Pkj ∼ KGjG
−1
i K−1Pk. (7)

where, K is a calibration matrix, defined as,

K =


fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1

 . (8)

In the original DPVO framework, patches are selected randomly, as this approach has been shown to achieve comparable
improvements in performance. However, a critical issue arises when a selected patch corresponds to a region on a moving
object. In such cases, the estimated camera pose G becomes inaccurate, negatively impacting the reconstruction of human
motion in world coordinates. Given that our primary focus involves human-centric video data, where moving humans often
occupy a significant portion of the image, excluding regions corresponding to moving humans presents a straightforward yet
effective strategy for improving camera pose estimation accuracy.

To address this, we incorporate SAM [86] into the DPVO pipeline. Using the bounding box of a detected human as a
prompt, SAM generates a human mask. During the patch extraction process across frames, if a randomly selected patch falls
within the human mask, it is excluded and a new patch is selected instead. The resulting patch after applying the human mask
is denoted as P̂k. The corresponding masked projection matrix is subsequently represented as Pkj ,

P̂kj ∼ KGjG
−1
i K−1P̂k. (9)

Following the principles of DPVO, a bipartite patch graph is constructed to capture the relationships between patches and
video frames. In this graph, edges connect patches and frames that are within a specified distance, defined by the temporal
relationship between frame i and frame j). The graph is inherently dynamic, as older frames are discarded as newer frames
are introduced. For each edge (k, j) in the patch graph, the visual alignment, determined by the current estimates of depth and
camera poses, is evaluated. This is achieved by computing correlation features C ∈ Rp×p×7×7 (visual similarities), which
represent visual similarities. These correlation features are computed as follows,

Cuvαβ = guv · f(P̂kj(u, v) + ∆αβ) (10)

where u, v are the index of each pixel in patch k, f(·) is the bilinear sampling and ∆ is 7× 7 grid indexed by α and β. Based
on extracted features and correlations, DPVO uses MLP layers to predict trajectory update δkj and confidence weight Σkj .

Then, a differentiable bundle adjustment (BA) layers is proposed to solve both the depth and camera poses. BA operates
on the patch graph and outputs updates to depth and camera pose. The optimization objective of BA is shown as,∑

(k,j)∈E

∥∥∥KGjG
−1
i K−1P̂k −

[
P̂

′

kj + δkj

]∥∥∥2
Σkj

(11)

where ∥·∥Σ is the Mahalanobis distance and P̂
′

kj is the center of P̂kj . DPVO then applies two Gauss-Newton iterations to
the linearized objective, optimizing the camera poses and inverse depth component at the same time. The main intuition for
this optimization is to refine the camera poses and depth such that the induced trajectory updates agree with the predicted
trajectory updates.



C. Masked LEAP-VO Detailed Algorithm
In this section, we illustrate the detailed algorithm of our proposed camera estimation method Masked LEAP-VO. We start
with the preliminaries about tracking any point (TAP), which has been used in LEAP-VO [77]. Given an input video sequence
I = {It}Tt=1 of length T , where It denotes the t-th frame, the goal of TAP is to track a set of query points across these
frames. For a specific query point q with the 2D pixel coordinate xq

t ∈ R2 in frame It, TAP predicts both the visibility
Vq = [vq1, · · · , v

q
T ] and trajectory Xq = [xq

1, · · · , x
q
T ] of this point through the whole video. Thus, we have,

(X,V) = TAP(I, xq
t , It) (12)

LEAP-VO uses CoTracker [85] to as their TAP module. During inference, CoTracker will produce point feature ft for each
frame It and then concatenate these point features into a tensor Fq = [f1, · · · , fT ]. With predicted X and F, LEAP-VO tries
to predict whether each point query is on the dynamic object (dynamic label md) using anchor-based trajectory comparison
to alleviate the negative effect they bring to the camera pose estimation.

Subsequently, LEAP-VO uses temporal probability modeling to get the confidence of estimated trajectories of each point
query. Let X = [a,b], where a,b represent the x and y coordinates of all points in X , respectively. The probability density
function for a coordinate is modeled using a multivariate Cauchy distribution,

p(a|It,xi) =
γ( 1+T

2 )

γ( 12 )π
T
2 |

∑
a |

1
2 [1+(a−µa)TΣ

−1
a (a−µa)]

1+S
2

, (13)

and similarly for p(b|It, xi). Here, γ denotes the Gamma function. LEAPVO then filters out trajectories shorter than a prede-
fined threshold and inputs the remaining trajectories into a bundle adjustment (BA) stage with sliding window optimization.

However, as we mentioned in Sec. 3.3, the performance of this method is still satisfactory as the exclusion of the moving
object is not complete. Since we are dealing with human-centric videos, we can simply apply SAM to get the mask of human
and exclude these points. Thus, we set visibility of trajectories that contains points inside human mask to zero. The adjusted
BA function is shown as Sec. 3.3 in Sec. 3.3.



D. Camera Calibration Procedure
In this section, we show the detailed procedure of the camera calibration we mentioned in Sec. 3.4.1. We denote the selected
feature points of two frames during shot transition in world coordinate as

W1 = [(x
(1)
w1, y

(1)
w1 , z

(1)
w1 ), (x

(2)
w1, (y

(2)
w1 , z

(2)
w1 ), · · · , (x

(N)
w1 , y

(N)
w1 , z

(N)
w1 )]⊤,

W2 = [(x
(1)
w2, y

(1)
w2 , z

(1)
w2 ), (x

(2)
w2, (y

(2)
w2 , z

(2)
w2 ), · · · , (x

(N)
w2 , y

(N)
w2 , z

(N)
w2 )]⊤,

respectively. Suppose we have the initialized camera translation matrix T and camera rotation matrix R during shot transition
from Masked LEAP-VO in Sec. 3.3, where

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,T =

txty
tz

 , (14)

and since x
(1)
w1

y
(1)
w1

z
(1)
w1

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33


x

(1)
w1

y
(1)
w1

z
(1)
w1

+

txty
tz

 . (15)

Thus, according to Epipolar Constraint,

[
x
(1)
w2 y

(1)
w2 z

(1)
w2

] 0 −tz ty
tz 0 −tx
−ty tx 0


x

(1)
w2

y
(1)
w2

z
(1)
w2

 = 0. (16)

Thus, by substituting Eq. (15) to Eq. (16),

[
x
(1)
w2 y

(1)
w2 z

(1)
w2

] 0 −tz ty
tz 0 −tx
−ty tx 0

r11 r12 r13
r21 r22 r23
r31 r32 r33


x

(1)
w1

y
(1)
w1

z
(1)
w1

+

 0 −tz ty
tz 0 −tx
−ty tx 0

txty
tz

 = 0. (17)

Let’s denote [T]× as

[T]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 . (18)

As a result, the essential matrix can be denoted as E = [T]×R,

E =

e11 e12 e13
e21 e22 e23
e31 e32 e33

 =

 0 −tz ty
tz 0 −tx
−ty tx 0

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (19)

Since  0 −tz ty
tz 0 −tx
−ty tx 0

txty
tz

 = 0, (20)

by constructing essential matrix E and elimination of the second term, the Eq. (17) can then be rewritten as

[
x
(1)
w2 y

(1)
w2 z

(1)
w2

]e11 e12 e13
e21 e22 e23
e31 e32 e33


x

(1)
w1

y
(1)
w1

z
(1)
w1

 = 0 (21)



As our method is targeted for the in-the-wild multi-shot videos, we typically do not know the intrinsics for each shot. Thus,
we assume that through a multi-shot video, the camera intrinsics are the same. The camera intrinsic matrix K is denoted as,

K =

fx 0 ox
0 fy oy
0 0 1

 (22)

Similar as mentioned in Sec. 3.4.1, we denote the coordinates of detected 2D KPTs of two frames in the shot transition
as S1 = [(x

(1)
1 , y

(1)
1 ), (x

(2)
1 , y

(2)
1 ), · · · , (x(N)

1 , y
(N)
1 )]⊤ ∈ R2×N and S2 = [(x

(1)
2 , y

(1)
2 ), (x

(2)
2 , y

(2)
2 ), · · · , (x(N)

2 , y
(N)
2 )]⊤ ∈

R2×N . Based on intrinsic matrix K,

[
x
(1)
w2 y

(1)
w2 z

(1)
w2

]
=

[
x
(1)
2 y

(1)
2 1

]
1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1

 ,

x
(1)
w1

y
(1)
w1

z
(1)
w2

 =


1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1


x(1)

1

y
(1)
1

1

 (23)

Thus, we can substitute Eq. (23) to Eq. (21),

[
x
(1)
2 y

(1)
2 1

]
1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1


e11 e12 e13e21 e22 e23
e31 e32 e33




1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1


x(1)

1

y
(1)
1

1

 = 0. (24)

We can then denote fundamental matrix F as,

F =

f11 f12 f13f21 f22 f23
f31 f32 f33

 =


1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1


e11 e12 e13e21 e22 e23
e31 e32 e33




1
fx

0 0

− ox
fx

1
fy

0

0 − oy
fy

1

 , (25)

and we can rewrite Eq. (24) as,

[
x
(1)
2 y

(1)
2 1

]f11 f12 f13
f21 f22 f23
f31 f32 f33


x(1)

1

y
(1)
1

1

 = 0. (26)

One clarification is that the fundamental matrix F here is denoted as essential matrix E in Eq. (3) in Sec. 3.4.1. After we
derive Eq. (26), we can expand it as a linear equation, illustrated as,(

f11x
(1)
1 + f12y

(1)
1 + f13

)
x
(1)
2 + f31x

(1)
1 + f32y

(1)
1 + f33 +

(
f21x

(1)
1 + f22y

(1)
1 + f23

)
y
(1)
2 = 0. (27)

This illustrates the case for one correspondence, since we have correspondences, we can build up a linear equation system to
solve F. Thus, we create a matrix A based on S1 and S2, shown as,

A =
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Let f denotes the flattened version F,

Af =
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f23
f31
f32
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= 0. (29)



Then, we can solve f by applying singular value decomposition (SVD) on A. Decompose A into three matrices A = UΣV ⊤.
Substituting into Eq. (29),

UΣV ⊤f = 0

U⊤UΣV ⊤f = U⊤0

ΣV ⊤f = 0. (30)

Since f is in the null space of A, from decomposition, the null space is spanned by the last columns of V corresponding to
zero singular values in Σ. Thus, we can extract the last column of V (denoted as vn) and assign f = vn. After we get f , we
can get the fundamental matrix F. We can then derive essential matrix E from F shown as,

E = K⊤FK =

fx 0 0
0 fy 0
ox oy 1

f11 f12 f13
f21 f22 f23
f31 f32 f33

fx 0 ox
0 fy oy
0 0 1

 (31)

Then, we can derive camera rotation R and camera translation T by applying SVD on essential matrix E,

E = UΣV ⊤ =

u11 u12 u13

u21 u22 u23

u31 u32 u33

σ1 0 0
0 σ2 0
0 0 σ3

v11 v12 v13
v21 v22 v23
v31 v32 v33

⊤

(32)

R =

u11 u12 u13

u21 u22 u23

u31 u32 u33

0 −1 0
1 0 0
0 0 1

v11 v12 v13
v21 v22 v23
v31 v32 v33

⊤

,T =

u13

u23

u33

 (33)

The output R here is denoted as the Rδcam in Sec. 3.4.1.



E. Implementation Details of HumanMM
E.1. Training Details

The ms-HMR, the trajectory, and foot sliding refiner are trained on the AMASS [78], 3DPW [79], Human3.6M [61], and
BEDLAM [90] datasets, evaluate on EMDB and our ms-Motion. During training, we introduce random rotational noise
(ranging from 0 to 1 radian) along the y-axis to the root orientation Γ and random noise to the body pose θ at random
positions to simulate the inaccuracies of pre-estimated human motions caused by shot transitions in multi-shot videos. This
strategy enables the network to robustly recover smooth and consistent human motion from noisy initial parameters. The
introduction of these noise perturbations stems from the observation that relying solely on our orientation alignment module
may fall short in fully aligning the root pose across different shots in challenging scenarios, particularly when significant
angular discrepancies occur during shot transitions. To overcome this limitation, our trainable module is designed not only
to align root poses with camera parameters but also to ensure smooth transitions in local poses across shot boundaries. This
strategy significantly enhances the robustness of our method in managing abrupt orientation changes caused by multi-shot
video transitions.

E.2. ms-Motion Benchmark Details

Our ms-Motion Benchmark is building on existing multi-view datasets AIST [60], H36M [61]. The AIST dataset provides
world translation as ground truth. H36M dataset does not include such labels; therefore, we process human world translation
from [29] as the ground truth. For benchmarking, the test results were obtained after training HumanMM for 80 epochs
on a single NVIDIA-A100 GPU (1.3 days). This computational setup ensures efficient convergence of the model while
maintaining a high level of accuracy in human motion recovery.

E.3. Baseline Setting

The baseline mentioned in Tab. 5 in Sec. 5.4 is implemented as follows. For the input multi-shot videos, we process them
by using our proposed shot transition detector and human and camera parameters initialization as shown in Fig. 3 in
Sec. 3. Next, we directly concatenate the human translation, root orientation, and body pose based on the relative offsets
between frames. This method could achieve global motion recovery in a few scenarios with simple motions. However, our
observations reveal that this approach suffers from noticeable issues, such as foot sliding, motion truncation, and motion
collapse. As there were no existing methods for global human motion recovery, this approach can serve as our baseline for
conducting ablation studies to evaluate the effectiveness of our proposed training and optimization modules.



F. Visualization of Comparison between Existing Methods
F.1. Visualization of Comparison between Existing Methods

In this section, we present visual comparisons between our proposed method and existing approaches, including
SLAHMR [26], GVHMR [29], as well as the ground truth. These comparisons aim to highlight the advancements achieved
by our method in accurately reconstructing human motion. To ensure a comprehensive evaluation, we provide visualiza-
tions from multiple viewpoints: a side view (a), an alternative side view (b), a top-down view (c), and reconstructed motion
trajectories (d). The side view (a) allows for a detailed examination of the overall pose accuracy and alignment over time, em-
phasizing the consistency and anatomical plausibility of the reconstructed movements. The alternative side view (b) provides
additional insights into the depth and spatial relationships of the poses, capturing nuances that might be less apparent from
a single perspective. The top-down view (c) reveals the positional alignment and the spatial coherence of the trajectories,
showcasing the robustness of our approach in reconstructing dynamic and complex motions. Finally, the motion trajectories
(d) offer a quantitative and qualitative representation of the movement paths, highlighting the differences between methods
and their ability to accurately track and reproduce the ground truth trajectories. These visual comparisons underscore our
method ability in delivering precise, consistent, and realistic human motion recovery from multi-shot videos.





F.2. Visualization of in-the-wild multi-shot video

To further validate the performance of our proposed method, we apply HumanMM on a set of in-the-wild videos and provide
the visualizations as shown in the figure. The frames at the top illustrate key moments in the video sequence, with the
corresponding reconstructions visualized in 3D space below. The 3D reconstructions effectively capture the dynamic human
poses and trajectories over time. In subfigure (a), the side view highlights the accurate reconstruction of intricate human
motion, illustrating the consistency and smoothness of the trajectories even for fast and complex movements. Subfigure (b)
presents an alternative side view, offering another perspective that underscores the spatial coherence of the reconstructions.
Subfigure (c) provides a top-down view, offering an insightful perspective into the overall trajectory and positional accuracy of
the reconstructed poses as they evolve over time. This view particularly emphasizes the spatial distribution and alignment of
the poses in the reconstructed scene. These visualizations collectively demonstrate the robustness of HumanMM in handling
challenging, dynamic motions in diverse environments, further showcasing its applicability to real-world scenarios.
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Frame 0 Frame 67 Frame 68 Frame 200 Frame 300
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