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A. DAPS with Pixel Diffusion Models
Pixel diffusion models learn to approximate the time-dependent score function s✓pxt, tq « rxt log ppxt; �tq, where �t is
a predefined noise schedule with �0 “ 0 and �T “ �max. Langevin dynamics is used in DAPS due to its simplicity and
flexibility. However, other advanced MCMC sampler such as Hamiltonian Monte Carlo (HMC) can be used to enhance the
efficiency and quality. We will give detailed derivation in Appendix A.1. We also include a discussion of using the Metropolis
Hasting algorithm, a gradient-free MCMC sampling method in Appendix A.2.

According to the Langevin dynamics updating rule Eq. (4), HMC updating rule Eq. (9) and Metropolis Hasting updating
rule Eq. (14), we summarize the algorithm of DAPS with pixel diffusion models in Algorithm 1 with Langevin dynamics,
HMC or Metropolis Hasting. We also include an ablation study of different methods in Appendix I.

A.1. Sampling with Hamiltonian Monte Carlo
Hamiltonian Monte Carlo [4] is designed to efficiently sample from complex, high-dimensional probability distributions
by leveraging concepts from Hamiltonian dynamics to reduce random walk behavior and improve exploration of the target
distribution. Recall our goal is to sample from the proposal distribution ppx0 | xt,yq. We define the Hamiltonian Hpx0,pq “
Upx0q ` Kppq, where the potential energy Upx0q “ ´ log ppx0 | xt,yq and the kinetic energy Kppq “ 1

2p
Jp. We then

simulate Hamiltonian dynamics to propose new samples.

1. Start with the estimator from probability flow ODE x̂p0q
0 “ x̂0pxxtq and sample a initial momentum pp0q „ N p0, Iq at

diffusion time step t.
2. Simulate Hamiltonian Dynamics with step size ⌘t, momentum damping factor �t, and number of steps N , where the

updating rule for j “ 1, ¨ ¨ ¨ , N ,

px̂pj`1q
0 ,ppj`1qq “ Hamiltonian-Dynamicspx̂pjq

0 ,ppjqq, (9)

is given by:

ppj`1q “ p1 ´ �t⌘tq ¨ ppjq ´ ⌘trxkUpxkq `
a

2�t⌘t✏, ✏ „ N p0, Iq, (10)

x̂pj`1q
0 “ x̂pjq

0 ` ⌘tp
pj` 1

2 q
. (11)

Empirically, Hamiltonian Monte Carlo efficiently explores the target distribution ppx0 | xt,yq and requires less number of
steps N to achieve similar performance compared to Langevin dynamics, allowing for more efficient sampling. We find HMC
can speed up LatentDAPS with large-scale text-conditioned LDMs quite a bit. We will discuss this more in Appendix B.1.

A.2. Sampling with Metropolis Hasting algorithm
The Metropolis-Hastings algorithm [37] is a MCMC method used to sample from a target distribution ppxq, especially when
direct sampling is infeasible. It works by constructing a Markov chain whose stationary distribution corresponds to ppxq.
Here we discuss how to sample from ppx0 | xt,yq using Metropolis Hasting under Gaussian approximation. We adopt the
Gaussian kernel as the proposal distribution which is symmetry,

qpx Ñ x1q “ N px1;x, ⌘
2
t Iq (12)

where ⌘t is a hyperparameter to control the strength of the perturbation at diffusion time step t. Then we give the process of
the Metropolis Hasting algorithm.
1. Start with the estimator from probability flow ODE x̂p0q

0 “ x̂0pxxtq.
2. Perturb the current position by zero-centered Gaussian noise with standard deviation ⌘t, and number of steps N , for

j “ 1, ¨ ¨ ¨ , N ,
xpjq
prop “ x̂pjq

0 ` ⌘t✏, ✏ „ N p0, Iq (13)



Algorithm 1 Decoupled Annealing Posterior Sampling (DAPS)

Require: Score model s✓ , measurement y, noise schedule �t, ptiqiPt0,...,NAu.
Sample xT „ N p0, �

2
T Iq.

for i “ NA, NA ´ 1, . . . , 1 do
Initial pp0q „ N p0, Iq for HMC only
Compute x̂p0q

0 “ x̂0pxtiq by solving the probability flow ODE in Eq. (48) with s✓
for j “ 0, . . . , N ´ 1 do

Langevin dynamics:

x̂pj`1q
0 – x̂pjq

0 ` ⌘t

´
rx̂0 log ppx̂pjq

0 |xtiq ` rx̂0 log ppy|x̂pjq
0 q

¯
`

a
2⌘t✏j , ✏j „ N p0, Iq.

or HMC:
px̂pj`1q

0 ,ppj`1qq – Hamiltonian-Dynamicspx̂pjq
0 ,ppjqq,

or Metropolis Hasting:
x̂pj`1q
0 – Metropolis-Hastingpx̂pjq

0 q
end for
Sample xti´1 „ N px̂pNq

0 , �
2
ti´1

Iq.
end for
Return x0

3. Update position by,

x̂pj`1q
0 “ Metropolis-Hastingpx̂pjq

0 q “
#
xpjq
prop w.p. ↵px̂pjq

0 Ñ xpjq
propq

x̂pjq
0 otherwise

, (14)

where the acceptance probability ↵px̂pjq
0 Ñ xpjq

propq is given by,

↵px̂pjq
0 Ñ xpjq

propq “ min

˜
1,

ppxpjq
prop | xt,yq

ppx̂pjq
0 | xt,yq

¸
« min

˜
1,

N pxpjq
prop;xt, �

2
t Iq ¨ N py; Apxpjq

propq, �2
yIq

N px̂pjq
0 ;xt, �

2
t Iq ¨ N py; Apx̂pjq

0 q, �2
yIq

¸
(15)

Empirically, Metropolis Hasting usually performs worse than Langevin dynamics and HMC and less efficient but more
flexible to tasks that don’t have access to the gradient of the data likelihood, rx0 log ppy | x0q, i.e. the forward function A is
non-differentiable or its gradient is inaccessible. We will discuss more about such tasks in Appendix C.



B. DAPS with Latent Diffusion Models
Latent diffusion models (LDMs) [40] operate the denoising process not directly on the pixel space, but in a low-dimensional
latent space. LDMs have been known for their superior performance and computational efficiency in high-dimensional data
synthesis. In this section, we show that our method can be naturally extended to sampling with latent diffusion models.

Let E : Rn Ñ Rk and D : Rk Ñ Rn be a pair of encoder and decoder. Let z0 “ Epx0q where x0 „ ppx0q, and ppz; �q be
the noisy distribution of latent vector z by adding Gaussian noises of variance �

2 to the latent code of clean data. We have the
following Proposition according to the factor graph in Fig. 3b.

Proposition 2. Suppose zt1 is sampled from the measurement conditioned time-marginal ppzt1 | yq, then

zt2 „ Ex0„ppx0|zt1 ,yqrN pEpx0q, �2
t2Iqs (16)

satisfies the measurement conditioned time-marginal ppzt2 | yq. Moreover,

zt2 „ Ez0„ppz0|zt1 ,yqrN pz0, �2
t2Iqs. (17)

also satisfies the measurement conditioned time-marginal ppzt2 | yq.

Remark. We can efficiently sample from ppx0 | zt1 ,yq using similar strategies as in Sec. 3, i.e.,

xpj`1q
0 “ xpjq

0 ` ⌘ ¨
´
r

xpjq
0

log ppxpjq
0 | zt1q ` r

xpjq
0

log ppy | xpjq
0 q

¯
`

a
2⌘✏j . (18)

We further approximate ppxpjq
0 | zt1q by N pxpjq

0 ; Dpẑ0pzt1qq, r2t1Iq, where ẑ0pzt1q is computed by solving the (unconditional)
probability flow ODE with a latent diffusion model s✓ starting at zt1 . The Langevin dynamics can then be rewritten as

xpj`1q
0 “ xpjq

0 ´ ⌘ ¨ r
xpjq
0

˜
}xpjq

0 ´ Dpẑ0pzt1qq}2
2r

2
t1

` }Apxq ´ y}2
2�2

y

¸
`

a
2⌘✏j . (19)

On the other hand, we can also decompose ppz0 | zt1 ,yq « ppz0 | zt1qppy | z0q and run Langevin dynamics directly on
the latent space,

zpj`1q
0 “ zpjq

0 ` ⌘ ¨
´
r

zpjq
0

log ppzpjq
0 | zt1q ` r

zpjq
0

log ppy | zpjq
0 q

¯
`

a
2⌘✏j . (20)

Assuming ppzpjq
0 | zt1q by N pzpjq

0 ; ẑ0pztq, r2t1Iq, we derive another Langevin MCMC updating rule in the latent space,

zpj`1q
0 “ zpjq

0 ´ ⌘ ¨ r
zpjq
0

˜
}zpjq

0 ´ ẑ0pzt1q}2
2r

2
t1

` }ApDpzpjq
0 qq ´ y}2
2�2

y

¸
`

a
2⌘✏j . (21)

Both approaches are applicable to our posterior sampling algorithm. We summarize DAPS with latent diffusion models
in Algorithm 2. It is worth mentioning that when employing the Gaussian approximation for ppx0 | xtq, pixel-space
Langevin dynamics typically results in higher approximation errors compared to latent-space Langevin dynamics but offers
significantly faster computation. A practical approach is to utilize pixel-space Langevin dynamics during the early stages (i.e.,
for NA • i ° M ) to balance approximation accuracy with efficiency, transitioning to latent-space Langevin dynamics in the
later stages (i.e., for M • i • 1) to achieve improved sample quality, where M is a hyperparameter that trade-off efficiency
and approximation accuracy. For simplicity, we set M “ NA throughout our experiments, and leave the exploration of this
hyperparameter as a future direction.



Algorithm 2 Latent Diffusion Decoupled Annealing Posterior Sampling (LatentDAPS) with Langevin Dynamics
Require: Latent space score model s✓ , measurement y, noise schedule �t, tiPt0,...,NAu, encoder E and decoder D.

Sample zT „ N p0, �
2
T Iq.

for i “ NA, NA ´ 1, . . . , 1 do
Compute ẑp0q

0 “ ẑ0pztiq by solving the probability flow ODE in Eq. (48) with s✓ .
Pixel space Langevin dynamics:
x̂p0q
0 “ Dpẑp0q

0 q
for j “ 0, . . . , N ´ 1 do

x̂pj`1q
0 – x̂pjq

0 ` ⌘t

´
rx̂0 log ppx̂pjq

0 | ztiq ` rx̂0 log ppy | x̂pjq
0 q

¯
`

a
2⌘t✏j , ✏j „ N p0, Iq. (22)

end for
ẑpNq
0 “ Epx̂pNq

0 q
Or, latent space Langevin dynamics:
for j “ 0, . . . , N ´ 1 do

ẑpj`1q
0 – ẑpjq

0 ` ⌘t

´
r

ẑpjq
0

log ppẑpjq
0 | ztiq ` r

ẑpjq
0

log ppy | ẑpjq
0 q

¯
`

a
2⌘t✏j , ✏j „ N p0, Iq. (23)

end for
Sample zti´1 „ N pẑpNq

0 , �
2
ti´1

Iq.
end for
Return Dpz0q.

B.1. Sampling with Large-scaled Text-conditioned Latent Diffusion Models
Large-scale text-conditioned latent diffusion models (LDMs) [39, 40] provide a diverse and powerful prior for solving inverse
problems. Given a text prompt c, our goal is to sample from ppx0 | c,yq9ppy | x0qppx0 | cq, where ppx0 | cq is modeled by
the large-scale text-conditioned LDMs. To achieve this, we can utilize Algorithm 2 for posterior sampling.

To evaluate the performance of DAPS with text-conditioned LDMs, we use Stable Diffusion v1.5 [40] and assess it on the
same eight tasks from the FFHQ 256 dataset, as described in [42, 43]. The sampling process is enhanced using classifier-free
guidance for text conditioning with a guidance scale of 7.5. The quantitative results are shown in Tab. 4, and the qualitative
results are presented in Fig. 8. A significant advantage of text-conditioned LDMs is their ability to flexibly control posterior
sampling using text prompts. As illustrated in Fig. 9, text prompts enable effective exploration of different modes in the
posterior distribution. Finally, we summarize the text prompts used for each task in Tab. 5.

Table 4. Quantitative evaluation on FFHQ 256ˆ256 of LatentDAPS with Stable Diffusion v1.5.. The value shows the mean over 100
images, and all tasks assume the measurement noise level �y “ 0.01. Numbers for PSLD are copied from the original paper.

Method Super Resolution 4× Inpaint (Box) Inpaint (Random) Gaussian deblurring Motion deblurring Phase retrieval Nonlinear deblurring High dynamic range
LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ LPIPSÓ PSNRÒ

LatentDAPS (SD-v1.5, ours) 0.109 31.43 0.133 23.33 0.064 34.60 0.160 30.73 0.101 33.84 0.256 27.47 0.116 31.67 0.186 24.52
PSLD (SD-v1.5) 0.201 30.73 0.167 - 0.096 30.31 0.221 30.10 - - - - - - - -



Super resolution 4x
Ground truth Measurement LatentDAPS (sd v1.5)

Inpaint (box)
Ground truth Measurement LatentDAPS (sd v1.5)

Motion deblurring 
Ground truth Measurement LatentDAPS (sd v1.5)

Phase retrieval
Ground truth Measurement LatentDAPS (sd v1.5)

Nonlinear deblurring
Ground truth Measurement LatentDAPS (sd v1.5)

High dynamic range
Ground truth Measurement LatentDAPS (sd v1.5)

Figure 8. Sampling results of LatentDAPS (SD v1.5) on FFHQ 256ˆ256 images. The sampling is enhanced with classifier-free guidance
for text with guidance scale 7.5. The used text prompt is shown in Tab. 5

Measurement: Super resolution 8x prompt: cows on the grassland

PSNR: 28.28

prompt: houses on the grassland

PSNR: 29.15

prompt: trucks on the grassland

PSNR: 26.21

Figure 9. Exploring different modes in the posterior distribution by text prompts. Multiple sampling results using LatentDAPS (SD
v1.5) were obtained for the super resolution 8× problem on a 512ˆ512 natural image. Text prompts provided additional control over the
sampled results..

Table 5. The text prompts used in LatentDAPS (SD v1.5).

Text Prompts

FFHQ Evaluation A natural looking human face.

Teaser Fig. 1
Blue butterfly on white flower, green blurred background.
Juicy burger with toppings, fresh fries, blurred restaurant background.
Sunlit mountain reflected in a serene lake, surrounded by trees.



Algorithm 3 Decoupled Annealing Posterior Sampling (DAPS) with Discrete Diffusion Models

Require: Score model s✓ , measurement y, ptiqiPt0,...,NAu.
Sample xT „ pT .
for i “ NA, NA ´ 1, . . . , 1 do

Compute x̂p0q
0 “ x̂0pxtiq by solving the reverse continuous-time Markov chain in Eq. (25) with s✓

for j “ 0, . . . , N ´ 1 do
Metropolis Hasting

x̂pj`1q
0 „ ppx0 | xt,yq « ppy | x0q expp}x0 ´ x̂0pxtiq}0{rtiq.

end for
Sample xti´1 „ ppxti´1 | x̂pNq

0 q following Eq. (24).
end for
Return x0

C. DAPS with Discrete Diffusion Models
Discrete diffusion models [3, 6, 33] are designed to generate categorical data over a finite support. Similar to diffusion
models in the continuous space, discrete diffusion models evolve a family of distributions p0pxq, . . . , pT pxq according to a
continuous-time Markov chain. Specifically, the forward diffusion process is defined as

dpt

dt
“ Qtpt, (24)

where Qt are predefined transition matrices, such that pt converges to a simple distribution like uniform distribution or a
special “mask” state, as t Ñ 8. To reverse the forward process, it suffices to learn the “concrete score”, spx, tq “

”
pypyq
ptpxq

ı

y‰x
.

The reverse diffusion process is given by
dpT´t

dt
“ QT´tpT´t, (25)

where Qtpy,xq “ spx, tqQtpx,yq and Qtpx,xq “ ´ ∞
y‰x Qtpy,xq.

Given the similarity of continuous and discrete diffusion models, we find that DAPS can be extended to perform posterior
sampling with discrete diffusion models. Instead of making the Gaussian approximation as in continuous diffusion models,
we approximate ppx0 | xtq with an exponential distribution over Hamming distance, i.e.,

ppx0 | xtq « expp´}x0 ´ x̂0pxtq}0{rtq, (26)

where rt is determined heuristically. We put the DAPS sampling algorithm for discrete diffusion models as in Algorithm 3.

Experiments on discretized MNIST dataset. We conduct experiments on the discretized MNIST dataset to demonstrate
how DAPS can be applied to inverse problems on categorical data. We first discretize and flatten MNIST data to binary strings.
We consider two inverse problems: 1) inpainting and 2) XOR operator. We mask out 50% pixels for the inpainting task. For
the XOR task, we draw 50% random pairs from the MNIST binary strings and compute XOR over all the pairs, which serves
as a highly nonlinear test case. We compare DAPS with best-of-N samples, and a recent work on discrete diffusion posterior
sampling (SVDD-PM).

As shown in Tab. 6, DAPS with discrete diffusion models is able to achieve very high classification accuracy on both
inverse problem tasks, outperforming both baselines by a large margin. This suggests the effectiveness of DAPS in solving
inverse problems for categorical data. We leave further exploration of DAPS in discrete-state space for future work.



Table 6. Quantitative results on discretized MNIST on two discrete inverse problems. Both SVDD-PM and best-of-N use 20 particles
for sampling. The classification accuracy is computed using a simple ConvNet model trained using MNIST training dataset.

Inpainting XOR
PSNR Ò Accuracy (%) Ò PSNR Ò Accuracy (%) Ò

DAPS 18.82˘2.03 97.0 20.50˘6.40 98.0
SVDD-PM 11.84˘2.56 38.0 13.00˘2.88 59.0
Best-of-N 10.56˘1.11 37.0 10.50˘1.13 36.0

D. Proof for Propositions
Proposition 3 (Restated). Suppose xt1 is sampled from the measurement conditioned time-marginal ppxt1 | yq, then

xt2 „ Ex0„ppx0|xt1 ,yqN px0, �
2
t2Iq (27)

satisfies the measurement conditioned time-marginal ppxt2 | yq.

Proof. We first factorize the measurement conditioned time-marginal ppxt2 | yq by

ppxt2 | yq “
º

ppxt2 ,x0,xt1 | yqdx0dxt1 (28)

“
º

ppxt1 | yqppx0 | xt1 ,yqppxt2 | x0,xt1 ,yqdx0dxt1 . (29)

Recall the probabilistic graphical model in Fig. 3a. xt2 is independent of xt1 and y given x0. Therefore,

ppxt2 | x0,xt1 ,yq “ ppxt2 | x0q. (30)

As a result,

ppxt2 | yq “
º

ppxt1 | yqppx0 | xt1 ,yqppxt2 | x0qdx0dxt1 (31)

“ Ext1„ppxt1 |yqEx0„ppx0|xt1 ,yqppxt2 | x0q (32)

“ Ex0„ppx0|xt1 ,yqN pxt2 ;x0, �
2
t2Iq, (33)

given xt1 is drawn from the measurement conditioned time-marginal ppxt1 | yq.

Proposition 4 (Restated). Suppose zt1 is sampled from the measurement conditioned time-marginal ppzt1 | yq, then

zt2 „ Ex0„ppx0|zt1 ,yqN pEpx0q, �2
t2Iq (34)

satisfies the measurement conditioned time-marginal ppzt2 | yq. Moreover,

zt2 „ Ez0„ppz0|zt1 ,yqN pz0, �2
t2Iq. (35)

also satisfies the measurement conditioned time-marginal ppzt2 | yq.

Proof. We first factorize the measurement conditioned time-marginal ppzt2 | yq by

ppzt2 | yq “
º

ppzt2 ,x0, zt1 | yqdx0dzt1 (36)

“
º

ppzt1 | yqppx0 | zt1 ,yqppzt2 | x0, zt1 , yqdx0dzt1 . (37)

Recall the probabilistic graphical model in Fig. 3b. zt2 is independent of zt1 and y given z0, while z0 is determined only by
x0. Therefore,



ppzt2 | x0, zt1 ,yq “ ppzt2 | x0q “ N pzt2 ; Epx0q, �2
t2Iq. (38)

Hence,

ppzt2 | yq “
º

ppzt1 | yqppx0 | zt1 ,yqppzt2 | x0qdx0dxt1 (39)

“ Ezt1„ppzt1 |yqEx0„ppx0|zt1 ,yqppzt2 | x0q (40)

“ Ex0„ppx0|zt1 ,yqN pzt2 ; Epx0q, �2
t2Iq, (41)

assuming zt1 is drawn from ppzt1 | yq.
Moreover, we can also factorize ppzt2 | yq by

ppzt2 | yq “
º

ppzt2 , zt1 , z0 | yqdz0dzt1 (42)

“
º

ppzt1 | yqppz0 | zt1 ,yqppzt2 | z0, zt1 ,yqdz0dzt1 (43)

“
º

ppzt1 | yqppz0 | zt1 ,yqppzt2 | zt1qdz0dzt1 . (44)

The last equation is again derived directly from Fig. 3b. Given that zt1 is sampled from ppzt1 | yq, we have that

ppzt2 | yq “ Ez0„ppz0|zt1 ,yqN pzt2 ; z0, �2
t2Iq. (45)



E. Discussions
E.1. Sampling Efficiency
The sampling efficiency is a crucial aspect of inverse problem solvers. The time cost of diffusion model-based methods is
highly dependent on the number of neural function evaluations (NFE). Here in Tab. 7 we show the NFE of the default setting
of some pixel space baseline methods and DAPS with different configurations. In Fig. 13, we show the quantitative evaluation
of DAPS with different NFE. As we can see, DAPS can achieve relatively much better performance than baselines with small
NFE.

Table 7. Sampling time of DAPS on phase retrieval task with FFHQ 256. The nonparallel single image sampling time on the FFHQ 256
dataset with 1 NVIDIA A100-SXM4-80GB GPU. The time depends may differ slightly in different runs.

Configuration ODE Steps Annealing Steps NFE Seconds/Image

DPS - - 1000 35
DDRM - - 20 2
RED-diff - - 1000 47

DAPS-50 2 25 50 4
DAPS-100 2 50 100 7
DAPS-200 2 100 200 13
DAPS-400 4 100 400 17
DAPS-1K 5 200 1000 37
DAPS-2K 8 250 2000 61
DAPS-4K 10 400 4000 108

E.2. Limitations and Future Extension
Though DAPS achieves significantly better performance on inverse problems like phase retrieval, there are still some limitations.

First, we only adopt a very naive implementation of the latent diffusion model with DAPS, referred to as LatentDAPS.
However, some recent techniques [42, 45] have been proposed to improve the performance of posterior sampling with latent
diffusion models. Specifically, one main challenge is that x0|y obtained by Langevin dynamics in pixel space might not lie in
the manifold of clean images. This could further lead to a sub-optimal performance for autoencoders in diffusion models since
they are only trained with clean data manifold.

Furthermore, we only implement DAPS with a decreasing annealing scheduler, but the DAPS framework can support any
scheduler function �

A
t as long as �

A
0 “ 0. A non-monotonic scheduler has the potential of providing DAPS with more power

to explore the solution space.
Finally, we utilize fixed NFE for the ODE solver. However, one could adjust it automatically. For example, less ODE solver

NFE for smaller t in later sampling steps. We would leave the discussions above as possible future extensions.

E.3. Broader Impacts
We anticipate that DAPS can offer a new paradigm for addressing challenging real-world inverse problems using diffusion
models. DAPS tackles these problems by employing a diffusion model as a general denoiser, which learns to model a powerful
prior data distribution. This approach could significantly enrich the array of methods available to the inverse problem-solving
community. However, it is important to note that DAPS might generate biased samples if the diffusion model is trained on
biased data. Therefore, caution should be exercised when using DAPS in bias-sensitive scenarios.



F. Experimental Details
F.1. Inverse Problem Setup
Most inverse problems are implemented in the same way as introduced in [13]. However, for inpainting with random pixel
masks, motion deblurring, and nonlinear deblurring, we fix a certain realization for fair comparison by using the same random
seeds for mask generation and blurring kernels. Moreover, for phase retrieval, we adopt a slightly different version as follows:

y „ N p|FPp0.5x0 ` 0.5q|, �2
yIq, (46)

which normalize the data to lies in range r0, 1s first. Here F and P are discrete Fourier transformation matrices and
oversampling matrices with ratio k{n. Same as [13], we use an oversampling factor k “ 2 and n “ 8. We normalize input
x0 by shifting its data range from r´1, 1s to r0, 1s to better fit practical settings, where the measured signals are usually
non-negative.

The measurement for high dynamic range reconstruction is defined as

y „ N pclipp↵x0, ´1, 1q, �2
yIq, (47)

where the scale ↵ controls the distortion strength. We set ↵ “ 2 in our experiments.

F.2. DAPS Implementation Details
Euler ODE Solver For any given increasing and differentiable noisy scheduler �t and any initial data distribution ppx0q,
we consider the forward diffusion SDE dxt “ ?

2 9�t�t dwt, where 9�t denotes the time derivative of �t and dwt represents
the standard Wiener process. This SDE induces a probability path of the marginal distribution xt, denoted as ppxt; �tq. As
demonstrated in [26, 49], the probability flow ODE for the above process is given by:

dxt “ ´ 9�t�trxt log ppxt; �tq dt. (48)

By employing the appropriate preconditioning introduced in [25], we can transform the pre-trained diffusion model with
parameter ✓ to approximate the score function of the above probability path: s✓pxt, �tq « rxt log ppxt; �tq. In DAPS, we
compute x̂0pxtq by solving the ODE given xt and time t as initial values.

Numerically, we use scheduler �t “ t and implement an Euler solver [26], which evaluates dxt
dt at Node discretized time

steps in interval r0, ts and updates xt by the discretized ODE. The time step ti, i “ 1, ¨ ¨ ¨ , Node are selected by a polynomial
interpolation between t and tmin:

ti “
ˆ

t
1
⇢ ` i

N ´ 1

ˆ
t

1
⇢

min ´ t
1
⇢

˙˙⇢

. (49)

We use ⇢ “ 7 and tmin “ 0.02 throughout all experiments.

Annealing Scheduler To sample from the posterior distribution ppx0 | yq, DAPS adopts a noise annealing process to sample
xt from measurement conditioned time-marginals ppxt | yq, where xt is defined by noisy perturbation of x0: xt “ x0 ` �

A
t ✏,

✏ „ N p0, Iq, where �
A
t is the annealing scheduler. In practice, we start from time T , assuming ppxT | yq « N p0, �

2
maxIq,

with �max “ �
A
T . For simplicity, we adopt �

A
t “ t and the same polynomial interpolation in Eq. (49) between �0 and �T for

total NA steps.

Hyperparameters Overview The hyperparameters of DAPS can be categorized into the following three categories.
(1) The ODE solver steps Node and annealing scheduler NA. These two control the total NFE of DAPS. Need to trade-off

between cost and quality. For linear tasks, Node “ 5 and NA “ 200. And for nonlinear tasks Node“10 and NA “ 400. For
LatentDAPS, including the one with the Stable Diffusion model, we choose Node “ 5 and NA “ 50 for linear tasks and
Node “ 10 and NA “ 100 for nonlinear tasks.

(2) The step size ⌘t and total step N in Langevin dynamics (also damping factor �t in HMC). These two control the sample
quality from ppx0 | xt,yq. For simplicity, we adopt a linear decay scheme ⌘t “ ⌘0r� ` t{T p1 ´ �qs, where � is the decay ratio
and T is the starting timestep. We include the final hyperparameters in Tab. 8. Moreover, instead of using the true �y “ 0.05
in Eq. (4), we regard �y as a hyperparameter and set it to 0.01 for better empirical performance. Moreover, we adopt HMC to
speed up LatentDAPS with Stable Diffusion, where we report µ “ 1 ´ �t⌘t and L “ ⌘

2
t , which are set as fixed values for all

timesteps.
(3) The �max and �min used in annealing process. We set �max “ 100 and 10 for DAPS and LatentDAPS and �min “ 0.1

to make be more robust to noise in measurement.



Table 8. The hyperparameters of experiments in paper for all tasks.

Algorithms Tasks Super Resolution 4× Inpaint (Box) Inpaint (Random) Gaussian deblurring Motion deblurring Phase retrieval Nonlinear deblurring High dynamic range

DAPS
⌘0 1e-4 5e-5 1e-4 1e-4 5e-5 5e-5 5e-5 2e-5
� 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
N 100 100 100 100 100 100 100 100

LatentDAPS
⌘0 1e-4 2e-6 2e-6 2e-6 2e-6 4e-6 2e-6 6e-7
� 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
N 50 50 50 50 50 50 50 50

LatentDAPS (SD v1.5)
L 1e-4 1e-5 3e-5 1e-5 2e-5 7e-5 1e-5 1e-5
µ 0.45 0.60 0.60 0.90 0.85 0.70 0.80 0.70
N 30 20 15 40 30 100 60 45

F.3. Baseline Details
DPS All experiments are conducted with the original code and default settings as specified in [13]. For high dynamic range
reconstruction task, we use the ⇠i “ 1{}y ´ Apx̂0pxiq}

DDRM We adopt the default setting of ⌘B “ 1.0 and ⌘ “ 0.85 with 20 DDIM steps as specified in [30].

DDNM We adopt the default setting of ⌘B “ 1.0 and ⌘ “ 0.85 with 100 DDIM steps as specified in [54].

DCDP We adopt the default setting in [31] and directly use the open-sourced code for all results.

FPS-SMC We adopt the default setting of M “ 20 and N “ 1000 as specified in [18].

DiffPIR We adopt the same evaluation settings and report the results in [59].

RED-diff For a fair comparison, we use a slightly different RED-diff[35] by initializing the algorithm with random noise
instead of a solution from the pseudoinverse. This might lead to a worse performance compared with the original RED-diff
algorithm. We use � “ 0.25 and lr “ 0.5 for all experiments.

PSLD We use the official implementation of PSLD [42] with the default configurations. Specifically, we use Stable diffusion
v1.5 for ImageNet experiments, which is commonly believed to be a stronger pre-trained model than LDM-VQ4 used in other
experiments.

ReSample All experiments are based on the official code of ReSample[45] with 500 steps DDIM sampler.



G. Experiments on Synthetic Data Distributions
Fig. 4 shows the sampling trajectories and predicted posterior distribution of DPS and DAPS on a synthetic data distribution.
Specifically, we create a 2D Gaussian mixture as the prior distribution, i.e., ppx0q “ 1

2 pN px0; c1,⌃1q ` N px0; c2,⌃2qq. Let
c1 “ p´0.3, ´0.4q and c2 “ p0.6, 0.5q, ⌃1 “ ⌃2 “ diagp0.01, 0.04q. We draw 1000 samples from this prior distribution to
create a small dataset, from which we can compute a closed-form empirical Stein score function at any noise level �.

Wasserstein: 0.057 Wasserstein: 0.499 Wasserstein: 0.252

Figure 10. DAPS and DPS (both SDE and ODE) on 2-dimensional synthetic data. DAPS achieves much more accurate posterior
sampling in terms of 2-Wasserstein distance.

Moreover, we consider the simplest measurement function that contains two modes, i.e., y “
exp

´
´ }x}2

0.05

¯
` exp

´
´ }x´p0.5,0.5q}2

0.05

¯
` n, where n „ N p0, �

2
yIq with �y “ 0.3. Let y “ 0,

so that the likelihood ppy | x0q has two modes at p0.5, 0.5q and p0, 0q. Since the prior distri-
bution is large only at p0.5, 0.5q, the posterior distribution is single-mode, as illustrated in Fig. 10.

Figure 11. Wasserstein distance between estimated xt „ ppxt | yq
and ground truth ppxt | yq.

We run both DPS and DAPS for 200 steps and 100
independent samples on this synthetic dataset. However,
as shown in Fig. 10, both SDE and ODE versions of
DPS converge to two different modes. This is because
DPS suffers from large errors in estimating likelihood
ppxt | yq, especially in the early stages. These errors
can hardly be corrected and are propagated along the
SDE/ODE trajectory. DAPS, on the other hand, samples
from a time-marginal distribution at each time step, and is
able to recover the posterior distribution more accurately.

We further investigate the performance of posterior es-
timation by computing the Wasserstein distance between
samples xt and ground truth posterior ppxt | yq for each
step t. As shown in Fig. 11, the Wasserstein distance for
DAPS decreases quickly and remains small throughout
the sampling process. This conforms with our theory that
the distribution of xt is ensured to be ppxt | yq for every
noise level �t.



H. Experimental Results on Compressed Sensing Multi-coil MRI
Compressed Sensing Multi-coil magnetic resonance imaging (CS-MRI) is a medical imaging problem that aims to shorten the
acquisition time of MRI scanning by subsampling. Specifically, CS-MRI takes in only a subset of the measurement space
(k-space) and solves an inverse problem to reconstruct the whole source image in high resolution. Suppose the underlying
source image is x0 P Cn. The forward function of CS-MRI can be written as

y “ PFSx0 ` n, (50)

where P is a subsampling operator with only zeros and ones on its diagonal, F is the Fourier transform matrix, and S is the
multi-coil sensitivity map so that S “ rS1, . . . ,Scs for c coils.

Experimental setup. We preprocess the fastMRI dataset [57] by calculating the magnitude images of the minimal variance
unbiased estimator (MVUE), and resize them into 320 ˆ 320 grayscale images. This pipeline is the same as [23]. We use
a diffusion model trained with EDM framework [26] on the preprocessed data. We compare DAPS with DPS [13] and
DiffPIR [59] designed for general image restoration tasks, and also ScoreMRI [10] and CSGM [23] which are specifically
designed for solving MRI with diffusion models.

Results. We include the quantitative results in Tab. 2 in the main text. Here, we provide some visual results of the
reconstructions in Appendix H, which validates the capability of DAPS in solving real-world medical imaging inverse
problems.

Figure 12. Qualitative results of inverse problem solvers with diffusion models on CS-MRI.



I. Additional Results
I.1. More Ablation Study
Effectiveness of different MCMC samplers. We conduct a detailed comparison of the three proposed MCMC samplers in
DAPS. To represent linear and nonlinear inverse problems, we select super resolution 4× and high dynamic range, evaluating
performance using FFHQ 256 images. Hyperparameter tuning is performed on 5 validation images, and results are reported on
10 test images. The comparison is illustrated in Tab. 9. HMC achieves the best balance between time efficiency and generation
quality among the methods. Langevin dynamics, while simpler to implement and requiring fewer tunable hyperparameters,
delivers competitive results. Although Metropolis Hastings shows slightly inferior performance, it has the advantage of being
extendable to problems where gradient information is unavailable.

Table 9. Quantitative comparison on different MCMC samplers. HMC achieves the best balance between time efficiency and generation
quality among the methods.

Super resolution 4× High dynamic range Number of forward function callings
PSNR Ò LPIPS Ó PSNR Ò LPIPS Ó

DAPS+HMC 28.17 0.160 27.68 0.163 10
DAPS+Langevin dynamics 28.15 0.166 27.57 0.162 100
DAPS+Metropolis hasting 27.46 0.192 25.21 0.224 50000

Effectiveness of the number of function evaluations. To better understand how the number of function evaluations (NFE)
of the diffusion model influences the performance, we evaluate the performance of DAPS with different configurations. Recall
that we use an ODE sampler in each inner loop to compute x̂0pxtq, the total NFE for DAPS is the number of inner ODE
steps times the number of noise annealing steps. We evaluate DAPS using NFE ranging from 50 to 4k, with configurations as
specified in Appendix E.1. As indicated by Fig. 13, DAPS achieves relatively decent performance even with small NFE.
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Figure 13. Quantitative evaluations of image quality for different number of function evaluations (NFE). Experiments are conducted
on the FFHQ 256 dataset for four different tasks.

Effectiveness of the number of ODE steps. Recall that we use an ODE sampler to compute x̂0pxtq, the estimated mean of
the approximated distribution ppx0 | xtq. We use the same number of function evaluations in our ODE sampler throughout the
entire algorithm. To test how the number of function evaluations (NFE) in the ODE sampler influences the performance, we
try different NFE on two linear tasks and one nonlinear task. In particular, when NFE is 1, the ODE sampler is equivalent to
computing Erx0 | xts via Tweedie’s formula. As shown in Fig. 14, increasing NFE in the ODE sampler consistently improves
the overall image perceptual quality, but also at the cost of a slightly lower PSNR. This trade-off between PSNR and LPIPS
is also observed in [35]. Perceptually, we notice that increasing ODE steps adds more fine-grained details to the produced
images, which improves LPIPS but decreases PSNR. This finding is corroborated by Fig. 15, where the reconstructed images
appear less blurry and show high-frequency details as the number of ODE steps increases.

Effectiveness of annealing noise scheduling step. To better understand how the scheduling of sigma influences performance,
we also evaluate the effects of sampling with varying noise scheduling steps. A larger number of scheduling steps implies
a denser discretization grid between �max and �min. The quantitative results are shown in Fig. 16. The performance of



Figure 14. The effect of the number of ODE steps for denoisers.

Figure 15. Qualitative ablation studies on the number of ODE steps. We run DAPS with different numbers of ODE steps on super-
resolution 4× task. More details are observed as the number of ODE steps increases.

DAPS on linear tasks slightly increases as the number of annealing noise scheduling steps increases, while its performance on
nonlinear tasks (e.g., phase retrieval) increases dramatically with the number of scheduling steps. However, DAPS achieves a
near-optimal sample quality when the number of noise scheduling steps is larger than 200.

Figure 16. The effect of the number of annealing noise scheduling steps.

Different Measurement Noise Level When subjected to varying levels of measurement noise, the quality of solutions to
inverse problems can differ significantly. To evaluate the performance of DAPS under different noise conditions, we present
the results in Fig. 17. DAPS is robust to small noise levels (� † 0.05) and degrades almost linearly as � continues to increase.



Figure 17. The effect of the measurement noise level �y.

Figure 18. Eight images with exactly the same measurement for the phase retrieval task.

I.2. More Discussion on Phase Retrieval
Compared to the baselines, DAPS exhibits significantly better sample quality and stability in the phase retrieval task. Unlike
other selected tasks, phase retrieval is more ill-posed, meaning that images with the same measurements can appear quite
different perceptually. Specifically, there are multiple disjoint modes with exactly the same measurement for phase retrieval,
while for other tasks, such as super resolution and deblurring, the subset of images with low measurement error is a continuous
set. We show in Fig. 18 eight images with disparate perceptual features but with exactly the same measurement in phase
retrieval. To mitigate this issue, oversampling is often used to reduce the ill-posedness of the phase retrieval problem. We
present quantitative results in Tab. 10 using different oversampling ratios in phase retrieval. These results further demonstrate
the strength of DAPS in addressing complex, ill-posed inverse problems.

Table 10. Phase retrieval of different oversampling ratios with DAPS.

Oversample 2.0 1.5 1.0 0.5 0.0

LPIPS 0.117 0.131 0.235 0.331 0.489
PSNR 30.26 29.17 24.87 21.60 16.02

I.3. More Analysis on Sampling Trajectory
Here we show a longer trajectory of phase retrieval in Figs. 19 to 21. The x̂0pxtq evolves from unconditional samples from
the model to the posterior samples while x0|y evolves from noisy conditioned samples to the posterior samples. These two
trajectories converge to the same sample as noise annealing down.

I.4. More Qualitative Samples
We show a full stack of phase retrieval samples in 4 runs without manual post-selection in Figs. 22 and 23. More samples
for other tasks are shown in Figs. 24 and 25. The more diverse samples from box inpainting of size 192 ˆ 192 and super
resolution of factor 16 are shown in Figs. 26 and 27. More samples for CS-MRI are shown in Fig. 28.



(a) the estimated means of ppxt | x0q as x̂0pxtq

(b) the samples x0|y „ ppx0 | xt,yq

Figure 19. DAPS trajectory for phase retrieval. The images are selected from 200 annealing steps, evenly spaced in DAPS-1k configuration.



(a) the estimated means of ppxt | x0q as x̂0pxtq

(b) the samples x0|y „ ppx0 | xt, yq

Figure 20. DAPS trajectory for phase retrieval. The images are selected from 200 annealing steps, evenly spaced in DAPS-1k configuration.



(a) the estimated means of ppxt | x0q as x̂0pxtq

(b) the samples x0|y „ ppx0 | xt,yq

Figure 21. DAPS trajectory for phase retrieval. The images are selected from 200 annealing steps, evenly spaced in DAPS-1k configuration.



Figure 22. Phase retrieval samples from DAPS (left) and LatentDAPS (right) in four independent runs on FFHQ. No manual selection
was performed to better visualize the success rate and sample quality.



Figure 23. Phase retrieval samples from DAPS in four independent runs on ImageNet. The success rate of ImageNet is less than FFHQ
and contains more samples with 180 degree rotation. No manual selection was performed to better visual ize the success rate and sample
quality.



(a) Super resolution 4× (b) Inpaint (box)

(c) Gaussian deblurring (d) Motion deblurring

(e) Nonlinear deblurring (f) High Dynamic Range

Figure 24. DAPS samples for various tasks on FFHQ. DAPS can obtain visually better samples for the above linear and nonlinear tasks.



(a) Super resolution 4× (b) Inpaint (box)

(c) Gaussian deblurring (d) Motion deblurring

(e) Nonlinear deblurring (f) High Dynamic Range

Figure 25. DAPS samples for various tasks on ImageNet. DAPS can obtain visually better samples for the above linear and nonlinear
tasks.



Figure 26. More samples for super resolution 16×. DAPS is able to generate diverse samples when the posterior distribution is multi-modal.



Figure 27. More samples for inpainting of 192ˆ192 box. DAPS is able to generate diverse samples when the posterior distribution is
multi-modal.



Figure 28. More samples for CS-MRI. DAPS is able to generate high-fidelity reconstructions for CS-MRI tasks.
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