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7. Appendix
In the appendix, we present a comprehensive analysis cov-
ering the following aspects: limitations of our approach, ex-
tended comparison on BraTS2020, model complexity anal-
ysis, comparison with CNN-based and Transformer-based
architectures, the necessity of SSMs-based design, an ab-
lation study on permutation matrix generation for long se-
quences, an analysis of Mamba’s computation graph, and
comparison on BraTS2018.

7.1. Limitation
While LS3M demonstrates promising performance, it en-
counters limitations:
1. Permutation Matrix Assumptions: The predicted per-

mutation matrix P inherently assumes a strict structure
where each row and column contains exactly one ‘1’,
with all other entries being ‘0s’. Ideal conditions would
require the temperature parameter τ to approach zero
and the iteration times n to be infinitely large to achieve
a perfect permutation matrix. However, practical con-
straints lead us to set τ = 1 and n = 10, resulting in a
matrix P that only approximates this ideal, with minimal
but non-zero values where zeros are expected.

2. Dataset Limitations: Our evaluations of LS3M are con-
ducted using BraTS2018 and BraTS2020, with the for-
mer being a subset of the latter. Ideally, additional
datasets unaffiliated with the BraTS series would pro-
vide a better validation of LS3M’s capabilities. Unfor-
tunately, suitable alternatives are scarce. Several factors
contribute to the scarcity of suitable alternatives:
• Specific Task Requirements: Our task demands mul-

tiple imaging modalities and a single segmentation
mask per patient, with modality image dimensions be-
ing integer multiples of 16 × 16 × 16 to ensure com-
patibility with multi-scale processing. These stringent
requirements significantly restrict the availability of
compatible datasets.

• Issues with Existing Datasets:
– ISLES (Ischemic Stroke Lesion Segmenta-

tion [22]): This dataset includes multi-modal im-
ages such as FLAIR, DWI, and ADC. However, the
FLAIR and DWI modalities are not well-registered,
and the volume size is too small for our task.

– CHAOS (Combined (CT-MR) Healthy Abdomi-
nal Organ Segmentation [29]) and AMOS (Ab-
dominal Multi-Organ Segmentation [26]): These
datasets provide CT and MRI modalities but only

one modality per patient, failing to meet the multi-
modal requirement.

– MSD (Medical Segmentation Decathlon [2]):
While this dataset includes CT and MRI modalities
across different organs, most of these are single-
modality datasets per patient, except for the brain
dataset, which is derived from BraTS.

To ensure a fair comparison, we align with prior works
such as RFNet [9], mmFormer [62], and M3AE [36],
which are among the most prominent works in this domain.
These methods have consistently used the BraTS2018 and
BraTS2020 datasets as benchmarks, which are considered
standard for multi-modal brain tumor segmentation with
missing modalities. Subsequent research has largely fol-
lowed this precedent, further validating the rationality of
using these datasets.

While we acknowledge the importance of diverse
datasets for broader validation, our current evaluation lever-
ages the most suitable and widely accepted datasets in this
field. We aim to explore additional datasets that align with
our specific task requirements in future work.

7.2. Extended Comparison on BraTS2020
In addition to the main experiments presented in Tab. 1,
, which compared nine models across 15 different miss-
ing modality scenarios using the Dice coefficient (DSC),
we provide an extended evaluation on BraTS2020 in this
appendix. Here, we summarize key performance met-
rics DSC, 95% Hausdorff distance (HD95), sensitivity
(Sens(%)), and specificity (Spec(%)) focusing on the aver-
age results across the 15 missing modality scenarios.

Moreover, we report the standard error (SE) and the 95%
confidence interval bounds (LB and HB) for the results,
computed using bootstrapping [42] with 10,000 resampling
iterations. This provides insights into the robustness and re-
liability of the proposed model’s performance, particularly
for clinically relevant scenarios.

Table 4 compares our proposed LS3M model against
other state-of-the-art methods across the Whole Tumor
(WT), Tumor Core (TC), and Enhancing Tumor (ET) re-
gions. Unlike the original table, which focused solely
on DSC for all 15 missing modality scenarios, this table
presents a more comprehensive set of metrics, offering a
deeper understanding of each model’s segmentation quality.
Our LS3M consistently outperforms the baselines across
all metrics, especially in DSC and HD95, indicating su-
perior segmentation accuracy and boundary precision, thus



demonstrating its effectiveness in clinical scenarios with
missing modalities.

7.3. Comparison of Model Complexity
To assess the model complexity of our LS3M, we com-
pare the number of parameters and GFLOPS with other ex-
isting models, as shown in Table 5. Compared to UNet-
MFI [66], LS3M achieves 6% higher performance while re-
quiring only 35% of the GFLOPS, demonstrating the effi-
ciency of our global modeling designs, including the combi-
nation of SortP, the S3M block, and the Global Input Strat-
egy (GIS).

Notably, mmFormer [62] employs Transformer blocks
to model long-range dependencies, but only at a very low
resolution, specifically 4× 4× 4. While this reduces com-
putational burden, it limits the ability to build detailed cor-
relations, resulting in average DSC scores for WT, TC, and
ET of around 82.92%, 74.90%, and 58.02%, respectively.
In contrast, LS3M is capable of building long-range depen-
dencies at higher resolutions (20×20×20 and 10×10×10),
leading to superior performance across all metrics (88.22%,
79.76%, and 63.60% for WT, TC, and ET, respectively).

The comparison results showcase that LS3M not only
provides state-of-the-art segmentation accuracy but also
maintains an efficient balance between model complexity
and performance, highlighting its potential for practical ap-
plications.

7.4. Comparison with CNN-based and
Transformer-based Architectures

To evaluate the superiority of our SSM-based architecture,
we first simplify LS3M by excluding the SortP and S3M
components, resulting in a purely CNN-based architecture.
Next, we add a Transformer block in place of the SortP and
S3M blocks to create a Transformer-based version. Finally,
we scale the CNN-based architecture to match the same
level of GFLOPs as our model for a fair comparison. The
results are presented in Tab. 6.

The GFLOPs row shows the computational complex-
ity of each model. Although Transformer-based architec-
tures can capture long-range dependencies, they incur 35%
higher GFLOPS compared to our SSMs-based architecture.
In terms of segmentation accuracy, our architecture outper-
forms the others across all tumor regions: Whole Tumor
(WT), Tumor Core (TC), and Enhancing Tumor (ET). No-
tably, the scaled CNN model, with GFLOPs similar to ours,
still falls short of our model’s performance, emphasizing the
effectiveness of our design.

7.5. Necessity of SSMs-based Design
Accurate brain tumor segmentation in incomplete multi-
modal scenarios is challenging due to the lack of sufficient
information, making it difficult to capture tumor boundaries

and spatial relationships effectively. Long-range modeling
plays a critical role in bridging this gap by providing a more
comprehensive representation that compensates for miss-
ing modalities and ensures robust segmentation. As illus-
trated in Sec. 7.3 and Sec. 7.4, while Transformer-based ar-
chitectures can mitigate the challenges of long-range mod-
eling, they exhibit significant limitations. These include
high computational costs or the necessity to operate at very
low resolutions, which limits their ability to capture fine-
grained details effectively. For example, mmFormer [62]
uses Transformer blocks only at low resolutions (4× 4× 4)
to reduce computational load, but this compromises the
ability to build detailed spatial correlations. In contrast,
UNet-MFI [66] requires 499.52 GFLOPS. The high compu-
tational costs arise from the large sequence lengths inherent
in 3D brain MRI data, resulting in quadratic increases in
computation for high-resolution images.

Therefore, employing a more efficient approach to build
long-range dependencies is critical. Our LS3M addresses
these challenges by using SSMs-based designs, which effi-
ciently model both local and long-range dependencies while
maintaining lower computational overhead. This allows
LS3M to operate at higher resolutions (20 × 20 × 20 and
10 × 10 × 10) without incurring the prohibitive compu-
tational costs associated with Transformers, thus striking
a balance between computational efficiency and segmenta-
tion accuracy.

7.6. Ablation Study on Permutation Matrix Gener-
ation for Long Sequences.

In our LS3M framework, we propose an efficient alterna-
tive to handle longer sequences for features at higher res-
olutions by using bilinear interpolation to scale the permu-
tation matrix instead of employing SortNet. We conducted
ablation experiments to compare our approach with three
other methods. Specifically, we used SortNet as the first
comparison model. Additionally, we used the permutation
matrix from the lower resolution and scaled it using three
different up-sampling techniques: Transposed Convolution
(TransConv), Bilinear Interpolation with Corner Alignment
(BI-CA), and Bilinear Interpolation without corner align-
ment (BI), which is our proposed method.

Table 7 presents the results of these ablation experi-
ments. The comparison highlights that our method (Bi-
AF) achieves the best overall performance for both WT and
TC, with only a slight performance drop for ET compared
to SortNet. Notably, our approach maintains a competi-
tive balance between segmentation accuracy and computa-
tional simplicity, demonstrating its effectiveness in generat-
ing permutation matrices for higher-resolution features.



Model DSC↑ HD95↓ Sens↑ Spec↑
AVG SE LB HB AVG SE LB HB AVG SE LB HB AVG SE LB HB

WT

RFNet 86.76 0.30 86.16 87.31 7.91 0.33 7.29 8.57 88.38 0.35 87.69 89.06 99.65 7.56e-5 99.64 99.67
mmFormer 82.92 0.45 82.10 83.83 11.13 0.43 10.30 11.97 79.80 0.53 78.72 80.84 99.68 7.52e-5 99.67 99.70

GSS 87.00 0.26 86.48 87.52 7.58 0.43 6.77 8.45 89.71 0.29 89.12 90.26 99.60 9.63e-5 99.58 99.61
Ours 88.22 0.26 87.68 88.71 7.10 0.38 6.37 7.87 90.19 0.30 89.58 90.76 99.65 9.69e-5 99.65 99.66

TC

RFNet 77.39 0.57 76.62 78.85 8.86 0.38 8.15 9.63 82.80 0.58 81.67 83.93 99.77 7.34e-5 99.76 99.78
mmFormer 74.90 0.66 73.61 76.19 12.22 0.39 11.48 13.02 66.72 0.71 65.30 68.10 99.81 6.69e-5 99.80 99.82

GSS 78.45 0.56 77.33 79.57 8.24 0.54 7.20 9.31 82.99 0.58 81.80 83.99 99.81 5.92e-5 99.80 99.82
Ours 79.76 0.55 78.63 80.76 7.88 0.42 7.07 8.69 85.12 0.55 84.06 86.19 99.83 5.81e-5 99.82 99.84

ET

RFNet 60.93 0.85 59.28 62.58 7.52 0.39 6.78 8.30 74.45 0.71 73.06 75.84 99.73 9.24e-5 99.72 99.75
mmFormer 58.02 0.83 56.41 59.65 9.00 0.42 8.21 9.84 55.68 0.92 53.91 57.51 99.88 3.71e-5 99.88 99.89

GSS 61.15 0.69 59.79 62.47 7.21 0.47 6.31 8.16 74.98 0.71 73.53 76.37 99.81 6.02e-5 99.80 99.83
Ours 63.60 0.67 62.31 64.93 6.05 0.39 5.32 6.86 76.34 0.73 74.90 77.73 99.82 6.02e-5 99.81 99.84

Table 4. Comparison of models across different metrics (DSC↑, HD95↓, Sens↑, Spec↑).

HeMiS U-HVED RFNet UNet-MFI mmFormer M3AE Ours
Param(M) 0.57 1.25 8.98 34.12 36.56 40.42 33.38
GFLOPS 2.27 4.58 102.28 499.52 30.23 36.14 171.58

WT 69.88 62.76 86.76 82.21 82.92 86.25 88.22
TC 52.76 43.53 77.39 74.01 74.90 77.56 79.76
ET 42.69 30.64 60.93 57.52 58.02 61.30 63.60

Table 5. Comparison with SOTA methods on model complexity
on BraTS2020.

CNN-based Transformer-based Ours CNN-GFLOPs
GFLOPs 115.30 236.39 171.58 176.41

WT 86.23 88.39 88.22 87.23
TC 77.06 79.47 79.76 78.75
ET 60.35 63.26 63.60 62.13

Table 6. Comparison of CNN-based, Transformer-based, and Our
SSMs-based models.

SortNet TransConv BI-CA BI (Ours)
WT 88.15 87.91 88.12 88.22
TC 79.64 79.13 79.55 79.76
ET 63.69 62.53 62.62 63.60

Table 7. Effect of permutation matrix generation for long se-
quences.

7.7. Comparison for RGB-depth task on NYUv2.
To explore the potential generalizability of our LS3M to
natural image segmentation tasks, we follow DMRNet’s
setting [55], and adapt RFNet, mmFormer, and our model
to RGB-depth task on NYUv2 [48]. We unify modality
encoders using pretrained ResNet-50, while retaining core
components and switching from 3D to 2D processing. As
shown in Tab. 8, results show our superiority on the RGB-
depth segmentation task.

7.8. Clarity of Permutation Matrix Generation.
To enhance the understanding of our permutation process,
we provide a visualization using a toy example of array
permutation. As illustrated in Fig. 6, for an (L × C) to-
ken sequence, SortNet generates an (L × L) matrix. Then,
Gumbel-Softmax makes rows approximate one-hot vec-

Modalities mIOU ↑
RGB Depth RFNet mmFormer DMRNet Ours
• ◦ 42.89 43.22 44.10 45.01
◦ • 40.76 41.12 41.88 43.02
• • 48.13 48.45 49.27 49.93
Average 43.92 44.26 45.08 45.98

Table 8. Performance comparison on NYUv2.

tors, and the Sinkhorn operator makes the matrix doubly-
stochastic (rows and columns sum to 1).

7.9. Analysis of Mamba’s Computational Graph

We analyze the computational graph of the Mamba block to
provide rationality for the inclusion of a channel attention
block in our S3M and the concatenation for multi-modal
sequences along the channel dimension for multi-modal fu-
sion. Given the similarities between our Mamba-like block
and the original Mamba block, the characteristics and be-
haviors of the two are expected to be analogous.

As depicted in Figure 7, the original Mamba block pro-
cesses channel interactions primarily through ‘Conv 1d’
and ‘In proj’ operations. The capability of these operations
to model channel-wise dependencies is inherently limited
by the constraints of convolutional and linear layers. To en-
hance the modeling of these dependencies, we incorporate
a channel attention block within our S3M framework.

After concatenating multi-modal sequences along the
channel dimension, the combined data is compressed
into Xdbl’, which is further split into SSM parameters
∆, B,C. This process translates information from the
channel dimension into the state dimension. The opera-
tion ‘torch.einsum(’bdl,bnl,bdl-¿bdln’, delta, B, u)’ facili-
tates the interaction between the channel dimensions of the
multi-modal sequences and the state dimensions of the SSM
parameters, culminating in an effective multi-modal fusion.



Figure 6. Permutation Matrix Generation.

7.10. Comparison on BraTS2018
We compare our method with five state-of-the-art methods
on BraTS2018, employing a three-fold validation approach
as detailed in Tab. 9. For each method, we provide the mean
and standard error of the Dice score in varying scenarios
with missing modalities. The results consistently indicate
that our LS3M outperforms the compared state-of-the-art
methods across all tumor categories, including whole tumor
(WT), tumor core (TC), and enhancing tumor (ET).

The results in Tab. 9 highlight the superior performance
of our method across various missing modality scenarios.
Our approach achieves the highest Dice scores for all three
tumor regions in most cases, reflecting its robustness in han-
dling incomplete data. Additionally, the reduced standard
errors in comparison to other methods indicate greater con-
sistency in segmentation performance across folds. This
advantage is attributed to our framework’s designs to effec-
tively leverage available modalities and model long-range
dependencies, ensuring accurate and reliable segmentation
results.
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M

FLAIR • ◦ ◦ ◦ • • • ◦ ◦ ◦ • • • ◦ •

AVG
T1ce ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • ◦ • •

T1 ◦ ◦ • ◦ ◦ • ◦ • ◦ • • ◦ • • •

T2 ◦ ◦ ◦ • ◦ ◦ • ◦ • • ◦ • • • •

WT

UNet-MFI
84.06

±0.14

65.90

±1.00

68.80

±0.55

85.23

±0.14

90.23

±0.20

89.88

±0.37

92.75

±0.36

75.46

±0.29

88.40

±0.06

89.47

±0.28

90.97

±0.39

93.27

±0.16

93.82

±0.19

89.71

±0.33

93.81

±0.05

86.12

±0.02

RFNet
83.01

±2.10

68.94

±0.64

71.78

±0.72

84.27

±0.65

89.25

±0.95

89.47

±0.85

90.50

±1.03

75.76

±0.51

87.30

±0.70

87.99

±0.66

90.54

±0.62

91.57

±0.74

92.00

±0.64

88.57

±0.78

92.18

±0.57

85.54

±0.76

mmFormer
81.10

±0.47

64.44

±0.68

66.87

±1.15

82.77

±0.03

87.22

±0.49

87.99

±0.40

89.32

±0.51

72.33

±0.38

85.48

±0.16

86.26

±0.21

88.28

±0.38

89.96

±0.43

90.44

±0.33

86.61

±0.29

90.52

±0.39

83.24

±0.27

M3AE
83.48

±3.03

65.67

±1.52

70.54

±1.48

79.68

±2.96

90.69

±1.97

89.39

±1.53

89.04

±2.48

75.69

±0.96

85.64

±2.63

87.28

±1.87

91.35

±1.13

92.03

±1.95

92.55

±1.67

88.53

±1.42

92.10

±1.39

83.98

±1.70

ShapSpec
82.76

±2.34

69.23

±1.26

71.09

±0.43

85.50

±0.59

90.43

±1.13

89.09

±0.75

92.01

±0.99

75.74

±0.72

88.72

±0.63

89.06

±0.40

91.37

±0.76

93.03

±0.75

93.27

±0.55

89.71

±0.64

93.39

±0.60

86.36

±0.77

Ours
85.12

±0.42

73.72

±0.54

74.81

±0.39

84.83

±0.36

93.17

±0.39

89.83

±0.42

90.03

±0.44

80.84

±0.42

88.27

±0.40

91.60

±0.40

91.24

±0.41

93.85

±0.43

94.41

±0.44

92.48

±0.43

95.89

±0.44

88.01

±0.42

TC

UNet-MFI
56.77

±0.72

53.93

±0.89

80.70

±0.30

63.35

±0.70

69.62

±0.03

84.89

±0.27

69.86

±0.26

85.11

±0.21

68.82

±0.95

87.24

±0.39

88.15

±0.09

73.36

±0.35

89.13

±0.23

89.27

±0.56

90.17

±0.02

76.69

±0.29

RFNet
60.88

±1.98

57.42

±0.85

77.81

±1.06

63.89

±1.91

71.58

±1.05

85.99

±0.99

71.40

±0.87

80.37

±0.88

70.21

±0.81

85.83

±0.77

86.13

±0.88

74.21

±0.45

87.56

±0.81

86.20

±0.88

87.90

±0.87

76.43

±0.69

mmFormer
52.60

±1.18

52.69

±0.34

77.61

±0.08

61.18

±1.48

66.22

±0.31

82.07

±0.17

66.25

±1.35

81.10

±0.36

65.87

±1.20

84.20

±0.65

84.79

±0.07

69.58

±0.60

85.78

±0.40

85.63

±0.47

86.47

±0.08

73.47

±0.35

M3AE
61.45

±1.36

56.93

±1.09

77.97

±2.21

61.85

±0.91

73.08

±1.20

86.50

±1.55

71.45

±1.58

81.48

±1.88

69.44

±0.96

87.53

±1.43

88.66

±1.29

75.35

±1.05

90.47

±1.25

88.45

±1.35

90.91

±1.23

77.37

±0.93

ShapSpec
60.71

±2.33

58.56

±0.64

78.22

±0.91

64.80

±1.96

73.34

±1.27

86.65

±0.92

72.58

±1.30

81.72

±0.80

70.81

±1.10

87.54

±0.72

88.03

±0.97

75.77

±0.71

89.88

±0.75

87.99

±0.80

90.26

±0.82

77.79

±0.66

Ours
63.29

±1.02

60.15

±1.15

81.76

±1.16

63.00

±1.09

75.62

±1.08

87.20

±1.09

73.16

±1.08

85.59

±1.10

71.26

±1.07

86.49

±1.07

89.55

±1.07

79.39

±1.08

90.23

±1.06

89.90

±1.06

91.55

±1.08

79.28

±1.08

ET

UNet-MFI
37.69

±0.66

25.23

±2.76

74.22

±1.00

41.37

±0.94

41.27

±0.93

77.88

±0.69

44.86

±1.06

76.67

±0.71

42.87

±0.91

78.48

±0.22

78.04

±0.61

46.42

±0.87

78.41

±0.29

78.98

±0.17

78.96

±0.43

60.16

±0.27

RFNet
37.21

±0.83

31.97

±0.60

66.43

±1.33

40.72

±1.04

42.30

±0.95

71.54

±0.62

44.12

±0.23

68.96

±0.76

43.37

±0.46

72.19

±0.78

72.33

±0.81

45.54

±0.31

73.24

±0.84

72.53

±0.84

73.49

±0.83

57.06

±0.51

mmFormer
32.22

±1.02

24.93

±1.14

75.80

±0.45

41.27

±0.94

39.69

±0.71

79.10

±0.43

44.31

±1.17

78.20

±0.30

43.04

±1.14

79.51

±0.12

80.08

±0.19

45.69

±0.69

79.38

±0.22

80.24

±0.04

80.06

±0.29

60.23

±0.28

M3AE
40.50

±1.35

33.50

±2.11

68.13

±2.39

41.40

±0.78

46.40

±1.74

75.28

±1.78

46.62

±0.61

71.51

±2.05

44.55

±0.51

75.04

±1.86

76.32

±1.63

48.65

±0.69

77.33

±1.44

76.87

±1.62

77.60

±1.55

60.96

±1.33

ShapSpec
39.73

±0.25

35.26

±0.62

69.94

±1.29

44.40

±1.42

45.83

±0.25

76.05

±0.75

47.81

±0.88

73.16

±1.09

46.00

±1.03

76.78

±0.89

77.10

±0.90

49.45

±0.23

78.18

±0.85

77.24

±0.93

78.35

±0.85

61.09

±0.24

Ours
41.54

±0.83

36.42

±0.44

68.81

±0.62

45.56

±0.75

47.94

±0.80

76.59

±0.83

52.56

±0.82

75.75

±0.82

48.59

±0.88

78.92

±0.89

81.86

±0.91

53.96

±0.90

78.45

±0.90

79.81

±0.91

80.96

±0.81

63.31

±0.81

Table 9. Comparison with five SOTA methods, including RFNet, UNet-MFI, mmFormer, M3AE, and ShaSpec on BraTS2018. The
performance on whole tumor, tumor core, and enhancing tumor segmentation are evaluated by the dice scores (reported as Mean ± Standard
Error). Red and blue indicate the 1st and 2nd ranks, respectively. Additionally, we use • to denote available modalities and ◦ to denote
missing modalities.
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