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Supplementary Material

A. Details of Our Method
A.1. LLM-guided Initialization Prompts
To better use the Large Language Model (LLM) to initial-
ize the relative relations of humans and given objects, in-
spired by Chain-of-Thought [6], we design a set of fill-
in-the-blank prompts for querying GPT, and below are the
prompt templates.

System: Assume you are a human-object
interaction estimator. Given <HOI prompt>,
let’s do it step by step.

Step 1: Body Part

User: You need first estimate body part;
LLM: One of <body_part>;

Step 2: Object State

User: Return the object state;
LLM: One of <obj_state>;

Step 3: RST initialization

User: Return relative direction,
orientation, and scale of object.
LLM:
One of <rel_dir>, <rel_ori>, <scale>.

The body part includes semantic labels of SMPL-H
like hands, back, and feet, and obj state includes
dynamic and static to represent if object rotation state
can be optimized or not. Both rel dir and rel ori
include [up, bottom, left, right, front,
back] to indicate global position to human and local ori-
entation to human. The [large, middle, small,
very small] is chosen as the scale of the object
initialization. Then we transfer these choices to pre-defined
values to initialize the object rotation, translation, and
scale.

A.2. Visualization of Object Affordance Parsing.
We visualize the contact probability for each 3D vertex of
open-set objects, as shown in Figure S.1. The objects are
downsampled to approximately 1000 points, and 2D prob-
ability functions are computed for each inpainting image.
These contact scores are then projected back onto the 3D
vertices, under the assumption that the expectation of all
points is 1. The color gradient from blue to red represents
the contact probability, with red indicating a higher likeli-
hood of interaction.

Figure S.1. Visualization of the open-set object affordance
parsing results. The object meshes are listed in the left column,
and the affordance score maps of “rides”, “sits”, and “lifts” in-
teractions are visualized on downsampled objects in the right two
columns. We normalize the score to [0, 1] and use red to represent
contact probability.

B. Implementation Details
We re-implement parts of the baseline methods [3, 4] fol-
lowing third-party implementations [2], using 8000 sam-
pling timesteps. For the DreamFusion* setting, we fol-
low [7] and employ only MVDream [5] for diffusion guid-
ance. During the optimization process, we project the object
mesh from various views to ensure consistent object geom-
etry and render results. Rendering images are directly used
as comparison outputs for these methods. For HOI mesh
comparisons, we use the pose estimation results and object
mesh from the second stage of DreamHOI [7].

In our method, the object translation and rotation are ini-
tialized based on feedback from Large Language Models
(LLMs), considering the human pose. We compute the 3D
bounding box of the human mesh and apply an expansion
factor of 1.2 to avoid collisions. During object parsing, to
improve efficiency, we downsample the object points D to
1024 and compute contact scores. For human pose synthe-
sis, we set the overall SDS optimization step to 10000 and
use the last 6000 timesteps for the spatial constraint loss.
During optimization, we adopt the intersection regularizer
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Figure S.2. Qualitative comparison results on the same object with different interactions.

from DreamHOI [7] on 2D object masks to discourage the
model from generating body parts or other objects within
the object mesh. For HOI optimization, the object rota-
tion matrix is initialized using axis angles along the [x, y,
z] axes. Object rotation gradients are then optimized along
the x and z axes based on object state feedback. When
the body parts feedback includes hands or palms, we ap-
ply a force closure loss on interacted meshes to synthesize
grasping poses. The learning rate is set to 0.01, and the loss
weights for ϕi, ϕn, ϕs, and ϕp are set to 10.0, 1.0, 5.0, and
10.0, respectively, by default.

C. Experiments
C.1. Ablation on Adaptive Mask Inpainting
In this section, we evaluate the impact of the adaptive
mask inpainting component by comparing different mask-
ing strategies: using only the full-body mask (w/o BP), us-
ing only body-part masks (w/o FB), and our full adaptive
mask inpainting approach. As shown in Figure S.3, the re-
sults illustrate the importance of each masking type in ac-
curately parsing object affordances based on the provided
text prompt. The ideal object affordance parsing should

Original Object w/o FB w/o BP Adap7ve Mask 
Inpain7ng

Text Input: “A Person Grasps the Chair”

Figure S.3. Ablation study on the different inpainting mask
settings. FB indicates Full-Body adaptive mask, and BP is Body-
Part mask.

identify and extract reasonable contact regions that align
with the described interaction, in this case, for “A person
grasps the chair”: (1) When dealing with w/o BP (Body-
Part Mask Only) setting, using only the body-part mask
yields localization ability of specific regions involved in the
interaction, but it lacks the global context provided by the



full-body mask. Consequently, this approach also gener-
ates incomplete affordance parsing, with the mesh display-
ing isolated and fragmented regions that do not capture the
entirety of the intended grasp action. (2) When only the full-
body mask is used (w/o BP), the output lacks precision, fail-
ing to identify specific body parts required for interaction,
leading to incorrect regions in the object. This results in
poorly defined contact points and misaligned geometry, as
evidenced by the significant missing details on the chair. (3)
For adaptive mask inpainting, by combining both full-body
and body-part masks adaptively, our method achieves a bal-
ance between local detail and global context. This approach
allows for precise affordance parsing that successfully iden-
tifies the regions of the chair relevant to the grasping action,
resulting in a more complete and accurate extraction of the
contact regions on the mesh.

These results underscore the importance of adaptive
mask inpainting in our framework, enabling effective and
accurate affordance parsing that aligns with human object
interaction cues described in the text. The combined use
of full-body and body-part masks ensures that both general
and detailed aspects of the interaction are captured, leading
to high-quality, interaction-specific object affordance.

C.2. More Qualitative Results

Qualitative Comparisons on Novel Objects. As shown in
Figure S.4, our method demonstrates superior performance
on novel open-set objects compared to the baseline meth-
ods: Firstly, our approach consistently synthesizes plausi-
ble human-object interactions with accurate spatial align-
ment and realistic poses, as illustrated in each row, rep-
resenting diverse scenarios such as “lifting a backpack,”
“cradling a baby doll,” “riding a motorcycle,” and “hug-
ging a humanoid robot”. Secondly, our method could cap-
ture nuanced poses that accurately reflect the intended inter-
action described by the input text. Unlike baseline methods
such as Magic3D [3] or DreamFusion [4], which struggle
to generate coherent human-object configurations in cases
like “A person rides the motorcycle” or “A person hugs the
humanoid robot,” our approach successfully adapts to the
object’s unique geometry. This highlights the effectiveness
of our method in handling previously unseen or complex
object meshes. Thirdly, the contact regions between the
human model and the object in our results are more accurate
compared to other methods. For instance, in the “A person
lifts the car” scenario, our method ensures proper alignment
of hands and maintains a realistic lifting pose, while com-
peting methods produce less convincing interactions or un-
realistic distortions. The use of public object meshes and
custom-designed objects (as seen in the bottom five rows
of Figure S.4) demonstrates our ability to generalize effec-
tively to novel object types. From common objects like a
backpack (from the BEHAVE dataset [1]) to complex and

unconventional objects like humanoid robots, our method
delivers consistently high-quality results.

Overall, the comparisons highlight the robustness and
versatility of our method in synthesizing high-quality
human-object interactions, particularly in challenging novel
open-set object scenarios. This demonstrates the efficacy
of incorporating SMPL-based priors, optimized spatial-
aware SDS loss, and effective multi-view alignment in our
pipeline.
Qualitative performance on Novel Interactions. Fig-
ure S.2 showcases the qualitative comparison results across
different methods for handling various interactions with the
same object, specifically a chair. The interactions include
“sitting on the chair,” “grasping the chair,” and “lifting the
chair.” Our method consistently delivers more accurate and
realistic human-object interactions compared to the base-
lines, as illustrated as follows: (1) For the interaction “A
person sits on the chair,” our method produces a natural sit-
ting pose with precise alignment between the human model
and the chair. In contrast, Magic3D and DreamFusion fail to
establish realistic contact or exhibit incorrect body propor-
tions, while DreamFusion* and DreamHOI produce poses
that are less aligned or lack contextual interaction fidelity.
(2) For the interaction “A person grasps the chair,” our
method effectively captures the arm and hand positioning
required for the grasping action, maintaining the integrity
of both the human and the chair geometries. Other methods
either produce distorted hand positions, as seen in Magic3D
and DreamFusion, or fail to properly depict the interaction
context, as evidenced by the unrealistic grasping angles in
DreamHOI. DreamFusion* shows a slight improvement in
hand positioning but struggles to represent a convincing in-
teraction. (3) For the interaction “A person lifts the chair,”
our approach uniquely succeeds in synthesizing a physi-
cally plausible lifting pose, where the human model exhibits
proper posture and contact with the chair. Other methods
encounter significant challenges: Magic3D and DreamFu-
sion generate implausible or incomplete lifting poses, while
DreamFusion* and DreamHOI show issues with body dis-
tortion or fail to convey the lifting action convincingly.

Overall, our method show superior generalization and
adaptability to varying human-object interactions with the
same object, effectively overcoming the challenges faced
by baseline methods. This highlights the robustness and ac-
curacy of our approach in synthesizing diverse interactions
while maintaining geometric and contextual consistency.
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Figure S.4. Qualitative comparison results with baselines on novel open-set objects. ∗ indicates we re-implement this method by
embedding object mesh into the diffusion process. We use novel object meshes generated by public models or designing websites in the
bottom 5 lines, and the backpack mesh comes from the BEHAVE dataset [1].
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