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1. Additional Related Work

Vision-Language Alignment plays an important role in
the intersection of Computer Vision and Natural Language
Processing due to its diverse application in downstream
tasks such as Visual Question Answering (VQA) [1], im-
age captioning [3] and image-text retrieval [15]. Early
work aims to map image and text features to a common
latent space for specific tasks [1, 3] using CNNs [10]
and RNNs [17], respectively. The recent pervasiveness
of Transformers [6] has brought a paradigm shift to the
pre-training with large-scale interleaved image-text pairs
followed by downstream fine-tuning. Specifically, some
single-stream Vision-Language Pre-Trained Models (VL-
PTMs) such as UNITER [4] and ViLT [9] utilise a single
transformer module to model the intra-modal and cross-
modal interactions. In contrast, models such as CLIP [16],
ALIGN [8] and ALBEF [11] leverage two separate intra-
modal transformers to better capture the intra-modal inter-
action in each modality. By pre-training with objectives
such as image-text matching [16], masked language mod-
elling [11] and masked image modelling [4], VL-PTMs are
enabled to align the visual information and linguistic con-
cepts. Most recently, some pioneering efforts have been
devoted to aligning image features with Large Language
Models using Q-Former [12] or linear transformation [13].
These models achieve significant performance results in
both V-L understanding and generation.

2. Preliminary Experiment Details

2.1. Details for Bias Visualization

We utilize a set of biased text prompts with the template
“This is a photo of a(n) {wg,} {wc,}.”, where w,, is a
word describing a sensitive attribute from the attribute list
A ={wa,,...,Wa,,},and w,, is a word describing a neu-
tral concept from the concept list C' = {w,,...,w., }.
Each attribute set A corresponds to a specific type of social
bias. For gender, we use A = {“male”, “female”}, and for
age, we use A = {“young”, “middle-aged”, “old”}, and for
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skin tone, we use A = {“light-skinned”, “dark-skinned”}.
For all three types of biases, we use the same set of neu-
tral concepts, C' = {“dancer”, “lawman”, ..., “astronaut”}
which contains 52 common occupations that are suppos-
edly neutral with regards to gender, age and skin tone. The
52 occupations are original labels from the FACET fairness
dataset. To produce biased text prompts, for each set A,
we swap the w,, while fixing the w,; to produce prompt
pairs/triplets such as “This is a photo of a male teacher.”
and “This is a photo of a female teacher.” We then obtain
CLIP text embeddings of these biased text prompts and use
t-SNE to visualize the distribution of biased text embed-
dings in a two-dimensional plot. Similarly, to visualize the
biases in the image embeddings, we use a set of biased im-
age prompts consisting of pairs/triplets of images with the
same neutral concepts from the list of 52 occupations with
different sensitive attributes. Different from the biased text
prompts obtained by swapping the attribute keyword in the
template, the biased image prompts are randomly sampled
from the FACET datasets.

2.2. Details for Embedding Association Tests

We follow both SEAT [14] and IEAT [19] to use the same
statistical method to measure the direction and magnitude
of biases by calculating the association between specific
sensitive attributes and neutral concepts. Let X and Y de-
note two sets representing two sensitive attributes oppo-
site to each other (such as “male” and “female”), where
X ={z1,....,2n}, Y ={vy1,...,ym}, and each z or y is
a text (or image) embedding related to the sensitive attribute
that X or Y represents, such as “boy” (related to “male”) or
“girl” (related to “female”). Moreover, let A and B denote
two sets corresponding to two neutral concepts respectively
(such as “career” and “family”), where A = {a1,...,an},
B ={by,...,b,}, and each a or b, similar to  or y, is a text
(or image) embedding related to the neutral concept that A
or B represents, such as “executive” (related to “career”)
or “home” (related to “family”). SEAT and IEAT use the
test statistic s(X,Y, A, B) to measure the differential asso-
ciation of the sensitive attributes X and Y with the neutral



Table 1. List of attribute-concept sets used in our embedding association tests. N; and N denote the number of images used in the sets
representing attributes (X and Y') and concepts (A and B) respectively to generate image embeddings, whereas N and N! denote the
number of sentences used in the sets representing attributes and concepts to generate text embeddings.

Test Attribute X  Attribute Y  Concept A  Concept B N’ N’ N! N!
Weight Thin Fat Pleasant Unpleasant 55 10 8 10
Skin Tone Light Dark Pleasant Unpleasant 55 7 8 5
Race European Afrlca.m Pleasant Unpleasant 55 6 25 32
American American
Age Young Old Pleasant Unpleasant 55 6 8 8
Gender-Science  Male Female Science Liberal Arts 21 40 8 8
Gender-Career  Male Female Career Family 21 40 8 8

concepts A and B, which is defined by

S(X,Y,A,B) =Y s(x,A,B)= > s(y.AB), (1)

rzeX yey
where s(w, A, B) is defined as

s(w, A, B) = mean,e 4 sim(w, a) — meanye psim(w, b),

2)
where sim(.,.) denotes the cosine similarity between two
embeddings. s(w, A, B) quantifies the differential associa-
tion of w (a text or image embedding corresponding to an
attribute (X or Y') with neutral concepts A and B based on
cosine similarities. The test statistic s(X,Y, A, B) further
aggregates and compares the differential association across
all texts or images related to the attribute and its opposite
attribute to measure the overall differential association of
attributes with concepts. It represents possible biases, e.g.
concept A is biased towards attribute X . We adopt a partial
list of X, Y, A, B pairs in SEAT and IEAT to measure vari-
ous common social biases. Each pair of X, Y, A, B is a bias
test, and six tests are conducted on CLIP image and text en-
coders respectively. The details of all six tests are shown
in Table. 1, and for each of these tests, SEAT or IEAT pro-
vides a collection of sentences or images corresponding to
the attributes and concepts.

For each test, we first test the significance of the associ-
ation represented by s(X, Y, A, B) using a permutation test
over all possible equal-size partitions {(X;,Y;)}; of the set
X UY with the null hypothesis that no biased association
exists. A two-sided p-value for this null hypothesis is cal-
culated by:

Pr]|s(X,Y, A, B)| < |s(X;,Y;, A, B)|]. 3)

We follow the setup of SEAT and IEAT to consider any bi-
ased association with a p-value smaller than 0.1 as signif-
icant. The significant biases can be further quantified in
terms of direction and magnitude by calculating the effect
size, d, which is defined by

meange x $(z, A, B) — mean,cy s(y, A, B)
StdweXuyS(w, A, B)

d= “4)

A positive effect size suggests that the concept of A is more
biased towards the attribute of X. The absolute value of the
effect size indicates the magnitude of the bias towards the
bias direction. To explore text bias, we use the CLIP text
encoder to generate text embeddings of X, Y, A, B for each
test, and calculate the corresponding p-values and effect
sizes. Similarly, for image bias, we obtain image embed-
dings of X, Y, A, B to calculate p-values and effect sizes.

3. Additional Preliminary Experiment Results

In addition to the bias visualization in Section 3.1 of our
main paper, we provide another visualization of skin tone,
gender and age biases in CLIP with a different backbone
(ViT-B/16) in Fig. 1. The visualization results in the main
paper were obtained from the ViT-B/32 backbone. We
observe similar bias patterns across different backbones.
Specifically, social biases exist in both text and image
modalities. All three types of biases in the image modality
are obvious, as most image embedding pairs/triplets with
the same concepts but different attributes are distributed far
from each other. On the other hand, in the text modality,
the skin tone bias is the most evident one, with the biased
embeddings forming two clusters based on different skin
tones.

Moreover, to further validate the robustness of our con-
clusion in Section 3.1, we randomly sample additional sets
of images with the same concepts (occupations) but differ-
ent social attributes for embedding and t-SNE plotting and
observe the bias pattern, as shown in Fig. 2. This is to
reduce the effect of additional visual features (e.g., image
background) on the t-SNE plots. We choose not to take
the average of embeddings because for each image, its cor-
responding embedding values may have different ranges.
Taking the average of these embeddings may lead to the
loss of critical information. Based on the visualization with
randomly sampled images, we show that the bias patterns
in image embeddings still exist regardless of different back-
grounds in randomly sampled images.
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Figure 1. Additional t-SNE visualization results of different social
biases in the image (the top row) and text (the bottom row) em-
beddings of ViT-B/16 backbone.

4. Additional Experimental Settings

4.1. Fairness Metrics

To calculate this metric, we first calculate the MaxSkew@QFk
for a specific text prompt ¢, denoted as MaxSkew@k(t).
The text prompt ¢ has a neutral concept (e.g. “kind”), and
it is used to retrieve k£ most similar images from a pool of
images. Each image has a sensitive attribute, a € A, where
A is a set of sensitive attributes such as genders, races, and
ages. The MaxSkew@F () is calculated as:

MaxSkew@k(t) = max In (pt’a) , (5)
ac€A Pa

where p; , denotes the proportion of images with attribute a
in the k images retrieved using ¢, and p, is equal to ‘7%', rep-
resenting the desired distribution which has ﬁ proportion
of each attribute, assuming equality of opportunity defini-
tion of fairness [7]. The MaxSkew@£k(¢) being O indicates
absolute fairness regarding the concept in ¢ because it sug-
gests that the proportion of different groups in the retrieved
images is equal to ﬁ, meaning that every image with spe-
cific attributes has the equal opportunity to be chosen.

Similarly, the Normalised Discounted Cumulative KL-
Divergence (NDKL), NDKL@k metric is also calculated
by averaging over NDKL@F(t) for different text prompts ¢
calculated based on the retrieval of & images, as mentioned
above, and it measures how the distribution of sensitive at-
tributes in the retrieved k images differs from the ideal dis-
tribution of sensitive attributes obeying equality of opportu-
nity, defined by

k
1 1
NDKLQk(t) = = ———— Dk (P,
0=7 2 gt

| Py), (6)

where D (P || Q) = >2; P(j) In % refers to the KL-
divergence of distribution P with respect to distribution (),

Z is a normalisation factor, P,Uti is the discrete distribution
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Figure 2. Additional t-SNE visualization of social biases in five
sets of randomly sampled image embeddings of CLIP ViT-B/32.

of the sensitive attributes in the top ¢ images retrieved by
the text prompt ¢, and P, is the desired distribution which
has ﬁ proportion of each attribute. Different from the
MaxSkew@Fk which indicates the most significant unfair-
ness, the NDKL@F calculates a weighted average of the
unfairness in the distribution of sensitive attributes in the k
retrieved images, providing insights about the overall un-
fairness. A smaller NDKL@k suggests a higher level of
fairness.



Table 2. Race debiasing results of three approaches trained on FairFace. ABLE is calculated based on in-domain fairness. We marked the
best numbers pertaining to fairness results with bold, and those pertaining to the V-L alignment results on IN1K and Flickr with underline.

T implies equal or better V-L performance over the original CLIP.

In-Domain Out-of-Domain INIK Flickr
Methods Backbone FairFace UTKFace Acc. (%)T R@5 (%)1 ABLE (%)t
MS,  NDKL}J | MS]  NDKL| | Top-I Top-5 TR IR

Original CLIP 0.528 0.182 0.575 0.137 68.31 91.83 96.4 85.5 63.31
CLIP-clip VIT-B/16 0.500 0.179 | 0.578 0.170 | 65.12 89.82 | 93.9 83.1 62.82
Biased-prompts 0.485 0.195 | 0.587 0.213 | 66.99 90.71 93.6  85.67 64.16
Ours 0.353 0.125 | 0.378 0.069 | 68.07 91.64 | 96.5f 83.8 69.14
Original CLIP 0.579  0.181 0.680 0.215 | 63.39 88.83 | 94.7 83.5 59.49
CLIP-clip VIT-B/32 0.673  0.219 | 0.725 0.261 | 62.63 88.51 | 94.1 82.3 56.22
Biased-prompts 0.582 0256 | 0.306 0.149 | 61.79 8745 | 915 83.2 58.70
Ours 0.342 0.111 | 0440 0.110 | 62.63 88.43 | 94.3 82.7 66.58
Original CLIP 0.571 0.236 | 0.626  0.184 | 7555 94.57 | 97.2 87.2 64.64
CLIP-clip VIT-L/14 0.535 0.210 | 0.593  0.157 | 73.60 93.40 | 94.9 82.3 65.24
Biased-prompts 0.617 0.256 | 0.515 0.174 | 7442 94.00 | 948 87.7t 62.57
Ours 0454 0.174 | 0.523 0137 | 75.13 9434 | 97.2F 87.0 68.83
Original CLIP 0.538 0.206 | 0.548 0.169 | 77.95 95.19 | 99.5 94.1 66.77
CLIP-clip VIT-H/14 0.514 0.192 | 0.588 0.188 | 77.75 95.17 | 99.0 93.7 67.61
Biased-prompts 0.529 0.195 | 0.434 0.180 | 77.31 95.06 | 99.0 93.3 66.87
Ours 0498 0.200 | 0.513 0.141 | 77.63 95.16 | 99.5f 93.8 68.18

During the evaluation of fairness, we use different
t to retrieve images and calculate the corresponding
MaxSkew@Fk(t) and NDKLQk(¢), and take the average
of the fairness metrics over all ¢ to obtain the final mean
MaxSkew@Fk and NDKL@QF fairness scores. We follow ex-
isting work [2, 18] to set k as 1,000.

4.2. Datasets

We split the FairFace and UTKFace datasets into train, val-
idation and test sets with a ratio of 8:1:1 for training and
evaluation. For FACET which is evaluation-only, we use
10% of the data for evaluation to maintain a similar scale to
the test sets of FairFace and UTKFace. We discard the im-
ages with the race label “Others” in the UTKFace train set
when training the model to debias race. Moreover, to align
the age groups with those in the FACET dataset, we merge
the age labels in FairFace and UTKFace datasets into three
groups: “young”, “middle-aged” and “old”.

4.3. Preparation of Biased Triplets During Training

At the training stage, we utilize a batch of biased triplets
consisting of two oppositely biased text prompts and a bi-
ased image, denoted as (¢;,t;,v;). The biased image v;
is directly drawn from the fairness datasets such as Fair-
Face and UTKFace. For each v; sampled, we first produce
its corresponding biased text prompts ¢; by filling in key-
words in a fixed template “This is a photo of a {age} {race}
{gender}” Specifically, the keywords age, race and gender
are the annotated labels of v;. We then create the counter-
factual text embedding ¢/ by altering one of the keywords

(for debiasing one type of bias only). For example, if ¢; is
“This is a photo of a middle-aged white male.”, its coun-
terfactual prompt ¢, is “This is a photo of a middle-aged
white female” for debiasing the gender bias. When de-
biasing biases with more than two directions, such as age
and race, we randomly choose a label from the remaining
labels to produce the counterfactual prompt. For universal
debiasing, where we aim to remove multiple biases simulta-
neously, we make counterfactual text prompts by switching
multiple keywords corresponding to each of the biases.

4.4. Implementation of Compared Baselines

CLIP-clip removes the most biased dimensions with the
largest amount of mutual information, only keeping m di-
mensions in image and text embeddings. We follow previ-
ous work [2] to choose m from [256, 400, 490] for ViT-B/16
and ViT-B/32, from [384, 600, 735] for ViT-L/14, and from
[512, 800, 980] for ViT-H/14, respectively.
Biased-prompts calculates a calibrated projection matrix
based on biased text prompts to debias text embeddings.
The complete set of biased prompts is not released in
the original paper of Biased-prompts, we therefore re-
implement this work using suggested prompts [5]. We set
the weighting hyperparameter to be 1000, following the de-
fault value used in the original paper.

4.5. Implementation of Our Method

We freeze the CLIP model and only train the bias align-
ment module for 100 epochs with a batch size of 512.
Adam optimizer is used with a learning rate chosen from



Table 3. Race debiasing results of three approaches trained on UTKFace.

In-Domain Out-of-Domain IN1K Flickr
Methods Backbone UTKFace FairFace Acc. (%)T R@5 (%)t ABLE (%)t
MS| NDKLJ] MS| NDKL{ Top-1 Top-5 TR IR

Original CLIP 0.575 0.137 | 0.528 0.182 | 68.31 91.83 96.4 85.5 61.71
CLIP-clip VIT-B/16 0.578 0.170 | 0.693 0.237 | 65.73 89.85 91.5 79.2 60.54
Biased-prompts 0.587 0.213 | 0485 0.195 | 66.99 90.71 93.6  85.6F 60.75
Ours 0.523  0.103 | 0462 0.149 | 67.63 91.52 96.1 84.4 63.19
Original CLIP 0.680 0.215 0.579 0.181 63.39 88.83 94.7 83.5 56.30
CLIP-clip VIT-B/32 0.795 0.399 | 0.855 0.330 | 62.69 88.28 93.3 81.5 52.50
Biased-prompts 0.306 0.149 | 0.582 0256 | 61.79 87.45 91.5 832 67.20
Ours 0.613 0.155 | 0.515 0.153 | 62.12 88.35 | 94.7f 823 57.87
Original CLIP 0.626  0.184 | 0.571 0.236 | 75.55 94.57 97.2 87.2 62.63
CLIP-clip VIT-L/14 0.635 0.179 | 0.519 0.199 | 75.09 94.31 96.4 86.3 62.14
Biased-prompts 0.515 0.174 | 0.617 0256 | 74.42  94.00 948  87.7F 66.29
Ours 0.620 0.184 | 0.563 0.214 | 75.06 94.34 96.7 86.6 62.67
Original CLIP 0.548 0.169 | 0.538 0.206 | 77.95 95.19 99.5 94.1 66.39
CLIP-clip VIT-H/14 0.525 0.233 | 0.657 0238 | 77.76 95.22% | 99.5f 93.7 66.69
Biased-prompts 0434 0.180 | 0.529 0.195 | 7731 95.06 99.0 933 70.50
Ours 0415 0.149 | 0.761 0397 | 77.71  95.18 | 99.5f 93.8 71.40

[2 x 107¢,5 x 1075]. We also apply early stopping based
on validation results. The bias alignment module is im-
plemented with two multilayer perceptrons consisting of
one hidden layer and a ReLU activation function, respec-
tively. The hidden layer size has the range [0.5d,d, 2d],
where d denotes the embedding dimension of the back-
bone. During training, the o combining the counterfactual
debiasing loss and the bias alignment loss is selected from
[0.1,0.3,0.5,0.7,0.9].

5. Additional Experimental Results
5.1. Race Debiasing Results

We present additional results for race debiasing in Table 2
and Table 3. Similar to the results of gender and age de-
biasing, our method also achieves a better trade-off be-
tween debiasing and V-L alignment compared to baselines
for race debiasing. This highlights the generalizability of
our method across bias types.

5.2. COCO Retrieval Results

We further evaluated our debiased models’ V-L perfor-
mance on the COCO retrieval dataset (shown in Table 4).
We found that our method only causes a minor performance
drop, highlighting our method’s capability to maintain V-L
task performance after debiasing.
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