Learning Phase Distortion with Selective State Space Models
for Video Turbulence Mitigation

Supplementary Material

1. More details about the architecture

1.1. State Space Model

To process the discrete input sequence x =
(vo,x1,..., 1) € RE, following [4], Mamba [2]
employs the zero-order hold (ZOH) assumption to convert
the continuous parameters A, B into their discrete counter-
parts A, Bas: A =24, B=(AA)"(eA4 1) -AB,
where A is the time scale. After discretizing A, B to
A, B, the SSM can be reformulated as:

h. = Ah;_1 + Bx;, y; = Chy+ Dy (D

Eq.! represents a sequence-to-sequence mapping from
x: to y¢. Since all operations are linear, all steps can be
computed in parallel. To facilitate this, a convolution ker-
nel is constructed [3]: K = (CB,CAB,...,CA*"'B),
where the recursive multiplication of A can be efficiently
computed by the scan algorithm and final output y is com-
puted by the convolution: y = « x K, which has linear
complexity with respect to the length of .

However, K is static over time, which does not satisfy
the requirement of real-world processes. To alleviate this,
the selective state space model (S6) [2] models the A, B,
C as linear projections of the input . This operation suc-
cessfully enables the input-dependent selective property.

1.2. The ReBlurNet (RBN)

The RBN initially transforms the input image into multi-
scale features, which are then modulated through element-
wise multiplication with the multi-scale features of a be-
fore being decoded to produce the blurred output image.
While any U-Net style architecture could serve as the base
network for the RBN, we ultimately selected NAFNet for
this implementation. Within the RBN framework, the latent
blur feature b undergoes processing through a sequence of
encoders, each comprising 1 x 1 convolution followed by
ReLU activation. The features produced by each encoder
are downsampled before being passed to the subsequent en-
coder. We denote the output features from the four encoders
aseb!, eb?, eb3, and eb?. Concurrently, the input image is
processed through the base network to generate the blurred
result. Importantly, before each input feature vi’ enters the
1-th encoder for processing, it undergoes modulation via el-
ementwise multiplication with eb?. The decoder compo-
nent of the base network remains unmodified in our RBN
implementation.

Models # of params (M) GMACs Latency (s)
TSRWGAN [5] 42.08 - 0.85
TMT [9] 26.04 1806.0 0.76
DATUM (8] 5.754 372.7 0.056
Turb-Seg-Res [7] ~ 30 - 2.404
MambaTM [ours] 6.904 143.5 0.030

Table 1. The cost of different video TM methods. The GMAC and
Latency are evaluated framewise under 960 x 540 patches with
NVIDIA A100 GPUs

# of input frames =~ PSNR SSIM  LPIPS
30 29.5765 0.8793 0.1544
40 29.6979 0.8815 0.1530
60 29.8129 0.8834 0.1521
120 299151 0.8843 0.1516

Table 2. The impact of numbers of input frames during inference

2. Cost of video TM methods

As an extension of Table 3 in the main paper, we provide the
computational cost of MambaTM and other other video TM
methods regarding model size and MACs in table 1. Our
model requires the least computation cost and has a much
faster inference speed than other models.

3. Additional experiments

3.1. Temporal extrapolation

Same as [6, 8], we can also observe better performance with
more input frames during testing. As shown in Table 2, our
MambaTM shows good temporal extrapolation properties.

3.2. The latent phase distortion (LPD)

We visualize an example of our Zernike VAE and LPD in
Figure 2. This example is taken from the validation set, fea-
turing an unseen scene and previously unencountered tur-
bulence parameters. We observe that the re-degraded image
produced by LPD and RBN is visually similar to the de-
graded image generated using the Zernike coefficients. The
mean of LPD, p, represents the turbulence strength, while
the variance o2 is visually correlated with the blur strength
variation, as indicated by the pixel-wise Lo norm of the cor-
responding Zernike coefficients.
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Figure 1. ualitative comparison on the OTIS dataset [1]. The images on the top are from the 13th sequence and the images on the bottom

are from the 14th sequence. Zoom in for better view
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Figure 2. A sample of the Zernike VAE and LPD map. (b) is
generated by the Zernike-based simulator with input image (a) and
Zernike coefficients whose pixel-wise norm is shown in (f), the
blur kernel size is 55 x 55. (c) is generated by our RBN with the
predicted LPD, whose statistics are shown in (d) and (e). Please
zoom in for a better view.

3.3. Real-world samples of the LPD-based simula-
tion

To demonstrate the generalization capbility of the LPD es-
timation and our LPD-based simulator, we provide a real-
world testing case in Figure 3. It can be seen that our
model successfully recovered the clean patterns from the
turbulence-affected images across a long-range distance.
By comparing the real-world degraded and our re-degraded
images using the restored image as the input, we can find
that our simulator can faithfully represent real-world turbu-
lence. We also provide the associated videos in the supple-
mentary material.
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Figure 3. Comparing the real-world turbulent images (from
BRIAR_1 in the supplementary material) and re-degraded images.

3.4. More qualitative comparison

To demonstrate the advancement of our method, we fur-
ther provide two real-world comparisons. The first is on the
static scenes from the OTIS dataset [1]. As presented in Fig-
ure 1, we compare MambaTM with other SOTA turbulence
mitigation works and we can find that our method recov-
ers more details than others. The second is on the dynamic
scene from the URG-T dataset [7], we compare MambaTM
with two recent SOTA DATUM [8] and Turb-Seg-Res [7].
To highlight our method’s temporal consistency on dynamic
scenes, we fetch 1D spatial slices from the same location in
each frame of the image sequences and stitch all slices along
the time axis. The result is shown in Figure 4. From this,
we can find that our method shows better restoration qual-
ity both spatially and temporally. Meanwhile, notice that
our method is 2x faster than DATUM and 50X faster than
Turb-Seg-Res.



(d) MambaTM (ours)

Figure 4. Qualitative comparison on the URG-T real-world dataset [7]. From the green box, we can find that spatially, our method can
produce the sharpest and most reliable restoration. We provide temporal slices (the orange line in red bounding boxes of each frame) in
the bottom right of each figure, from which we can find that temporally, our method generates the most stable and consistent output. Note
Figure (b) also suffers from the ghost effect caused by its temporal fusion method.
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