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A. Related Work

Scaling Test-time Computation. Humans often dedicate
significant time and effort to solve complex problems. In-
spired by this, many efforts have focused on scaling test-
time computation for Large Language Models (LLMs)
to tackle reasoning tasks such as mathematical problem-
solving [? ? ? ? ], code synthesis [? ? ? ], and work-
flow generation [? ? ? ]. One line of research adapts the
input space to leverage Chain-of-Thought (CoT) capabili-
ties, using approaches like in-context CoT examples [? ] or
zero-shot CoT prompts [? ]. Another branch modifies or
integrates reasoning paths within the output space, utilizing
strategies such as self-consistency [? ], CoT decoding [? ],
and verifier-based selection [? ? ? ]. Among these, test-
time verifiers have demonstrated generality and robustness
in enhancing reasoning performance. For example, early
work [? ] trains an Outcome Reward Model (ORM) to
evaluate final outputs and select the best-of-N candidates
for optimal results. Later, Lightman et al. [? ? ] adopt
the Process Reward Model (PRM) to evaluate intermediate
reasoning steps, achieving greater effectiveness. Snell et
al. [? ] further highlights that scaling test-time computation
is often more impactful than scaling model parameters dur-
ing training. Recently, OpenAl ol [? ] has demonstrated
exceptional reasoning capabilities across a variety of com-
plex and challenging scenarios, underscoring the potential
of this approach. Building on these advancements in under-
standing tasks, we conduct a comprehensive investigation
into whether verifier-based strategies can also enhance im-
age generation tasks, and propose a new Potential Assess-
ment Reward Model (PARM), specifically designed for this
domain.
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Reinforced Preference Alignment. After robust pre-
training and fine-tuning, LLMs often acquire substantial
knowledge. However, a post-training alignment stage is
typically required to align their output preferences to meet
specific targets, such as human feedback [? ? ? ] or
Chain-of-Thought (CoT) reasoning [? ? ? ]. Traditional
approaches [? ? ? ? ] often leverage reinforcement learn-
ing (RL) to address this challenge. These methods usu-
ally involve two steps: first, optimizing a neural-network-
based reward function within a preference model (e.g., the
Bradley-Terry model [? ]), and then fine-tuning the target
LLM to maximize this reward using techniques like prox-
imal policy optimization (PPO) [? ]. However, RL-based
methods often encounter issues related to complexity and
instability. To overcome these challenges, Rafailov et al. in-
troduced Direct Preference Optimization (DPO) [? ], which
parameterizes the reward model to enable the derivation of
the optimal policy through a closed-form solution. This ap-
proach has been effectively applied to enhance CoT capa-
bilities in mathematical reasoning [? ? ] and code gener-
ation [? ? ? ]. Further advancements have extended DPO
with step-wise preference data [? ? ] for more granular
supervision and multi-modality learning [? ? ] to support
visual reasoning. In this study, we apply DPO-based prefer-
ence alignment to autoregressive image generation, demon-
strating its effectiveness in improving image quality during
step-by-step decoding.

Autoregressive Image Generation. The transformer ar-

? ? ] have demonstrated a remarkably successful model-
ing approach in language and multi-modality. Motivated
by such progress, a series of work, e.g., DALL-E [? ],
LlamaGen [? ], and Chameleon [? ], utilizes such au-
toregressive modeling with casual attention to learn the de-
pendency within image pixels for image generation tasks,
rather than popular diffusion models [? ? ? ? ]. However,



such raster-order autoregression suffers from severe time
consumption and performance constraints when synthesiz-
ing high-resolution and high-fidelity images, attributed to
the growing number of discrete tokens compressed by VQ-
VQE [? ? ? ? ]. To address the challenges, MaskGiT [? ]
proposes to learn a bidirectional autoregressive transformer
with a parallel iterative decoding strategy, benefiting both
the generation performance and efficiency. Recently, this
approach has been effectively extended, primarily focusing
on two aspects: the unification of visual understanding and
generation (Show-o [? ]) and its integration with diffusion
techniques (MAR [? ]). Considering that such generation
paradigm is quite similar to that of LLMs, representing data
with discrete tokens and predicting iteratively conditioned
on previous tokens, we explore the potential of applying
CoT reasoning techniques within LLMs to autogressive im-
age generation. Through our thorough investigation, we
demonstrate its promising effectiveness for enhanced image
generation capabilities.

B. Data and Implementation Details

B.1. ORM

Zero-shot ORM. To implement a zero-shot ORM in im-
age generation, we adopt a pre-trained LLaVA-OneVision
(7B) [? ] for test-time verification. We adopt a simple
prompt to elicit its capability for text-to-image evaluation,
which we observe performs well in most cases, as below:

Prompt: “<image> This image is generated by a
prompt: <prompt>. Does this image accurately rep-
resent the prompt? Please answer yes or no without
explanation.”

The ‘<image>" and ‘<prompt>" denote and generated im-
age from Show-o [? ] and the input textual prompt.

ORM Ranking Data Curation. To obtain the fine-tuned
ORM from LLaVA-OneVision, we curate 288K text-to-
image ranking examples as specified in the main paper. We
adopt the same prompt in the instruction as the zero-shot
ORM, and label ‘yes’ or ‘no’ in the response to denote the
positive or negative instance, as showcased below:

Instruction: “<image> This image is generated by
a prompt: <prompt>. Does this image accurately
represent the prompt?  Please answer yes or no
without explanation.”

Response: “Yes” or “No”

B.2. PRM

Zero-shot PRM. We also utilize the pre-trained LLaVA-
OneVision (7B) as our zero-shot PRM, applying similar
prompt template used in ORM as:

Prompt: “<image> This is an intermediate image
in the generation process by a prompt: <prompt>.
Does this intermediate image accurately represent the
prompt? Please answer yes or no without explana-
tion.”

At each intermediate step in the generation process, the
zero-shot PRM assesses each candidate image with a binary
response, ‘yes’ or ‘no’. We then adopt a step-level best-
of-N strategy, selecting the most confident candidate and
following this path for subsequent decoding. By iteratively
employing the PRM at each step, the generation process is
guided step by step towards the final output.

PRM Ranking Data Curation. We observe that the im-
ages generated at intermediate steps tend to appear very
blurry, as only partial visual tokens in specific regions are
decoded while others remain unresolved. Since LLaVA-
OneVision is pre-trained only on natural images (similar to
those generated at the final step), the zero-shot PRM has
limited capability for precise step-wise evaluation. To ad-
dress this issue, we curate a 300K step-wise text-to-image
ranking dataset to fine-tune an improved PRM. We adopt
the same prompt in the instruction as the zero-shot PRM,
formulated as:

Instruction: “<image> This is an intermediate image
in the generation process by a prompt: <prompt>.
Does this intermediate image accurately represent the
prompt? Please answer yes or no without explana-
tion.”

Response: “Yes” or “No”

First, we utilize the 13K unique text prompts from our ORM
ranking dataset, generating 18 intermediate-step images per
prompt using Show-o. Inspired by Math-Shepherd [? ], we
employ an automated annotation approach to obtain accu-
rate step-wise labels, eliminating the need for costly human
labor or GPT assistance. For instance, to label the image
at step ¢ (1 < 7 < 18), we condition Show-o on that im-
age and then produce four different paths for the remaining
18 - ¢ steps. By evaluating the final images from each of
these paths, if any path receives a ‘yes’ score, it indicates
that step ¢ has a high potential to lead to a correct final out-
put, and thus it is labeled as ‘yes’; otherwise, it is labeled



as ‘no’. This automated approach allows us to efficiently
obtain step-wise annotations for assessing the generation.

Fine-tuned PRM. With the step-wise ranking data, the
LLaVA-OneVision is fine-tuned to boost the visual compre-
hension of intermediate-step images. The data format and
training configurations are the same as those used for fine-
tuning the ORM. After training, the PRM becomes more
capable of interpreting blurry images within the decoding
process for more accurate step-by-step selection.

B.3. PARM

In Figure 1, we illustrate why PRM is less suitable for au-
toregressive image generation. As shown, the early-stage
images are too blurry for reliable evaluation, given that only
a few regions are decoded, while the later-stage images de-
rived from similar previous steps lack sufficient distinction,
challenging for discrimination. To integrate the advantage
of both ORM and PRM, we propose Potential Assessment
Reward Model (PARM) and curate a new ranking dataset
with 400K instances by re-annotating the 13K text prompts
from ORM ranking data. The dataset is structured into three
subsets corresponding to the three evaluation tasks:

Clarity Judgment Data (120K). Through comprehen-
sive analysis, we observe that the baseline model (Show-0)
typically produces its first clear image between steps 8 and
12 within the 18-step generation, qualifying it for potential
assessment. Based on this, we simplify the annotation by
labeling steps after 11 as ‘yes’ and those before 10 as ‘no’.
Although this approach is static, the trained PARM acquires
generalization skills to adaptively identify the first ‘yes’ la-
bel within steps 8~12 during inference. The data format is
shown below:

Instruction: “<image> This image is a certain step
in the text-to-image generation process with a prompt:
<prompt>. It is not the final generated one, and will
keep iterating better. Do you think this image can be
used to judge whether it has the potential to iterate
to the image satisfied the prompt? (The image, which
needn’t to be confused but can be clear and basically
judged the object, can be used to judge the potential)
Answer yes or no without explanation.”

Response: “Yes” or “No”

Potential Assessment Data (80K). We assign intermedi-
ate images from steps after 11 with a ‘yes’ or ‘no’ label,
which is based on the final output label of that path in the

ORM data annotation. In practice, if the previous clarity
judgment task yields ‘yes’, the data of this task is organized
as a follow-up question-answering within a multi-turn con-
versation. The data sample of this task is formulated as:

Instruction: “<image> Do you think whether the
image has the potential to iterate to the image sat-
isfied the prompt? Please answer yes or no without
explanation.”

Response: “Yes” or “No”

Best-of-N’ Selection Data (200K). We directly utilize
the labels in the ORM ranking dataset, with the format as

Instruction: “<image> This image is generated by
a prompt: <prompt>. Does this image accurately
represent the prompt?  Please answer yes or no
without explanation.”

Response: “Yes” or “No”

C. Additional Results

Quantitative Results. In Table 1, we present a compre-
hensive performance comparison on GenEval [? ] between
previous diffusion and autoregressive models, and Shwo-o
equipped with our investigated reasoning strategies. Sub-
stantial improvement for text-to-image generation are ob-
served using different reasoning techniques. With PARM,
the gains in complex attributes, such as ‘“Two Obj.’, ‘Count-
ing’, ‘Position’, and ‘Attribute binding’ emphasize the ro-
bustness of our approach in handling challenging aspects of
compositional generation, setting a new standard in text-to-
image performance. In Figures 2 and 3, we present the per-
formance of test-time verification integrated with DPO [?
] and iterative DPO, respectively, instead of the test-time
verification only in Figure 2 of the main paper. As shown,
our propose PARM both achieves the best results as the NV
increases for best-of- N selection.

Qualitative Results. In Figures 4, 5, 6, 7, and 8, we
showcase qualitative examples of text-to-image generation
comparing the baseline, Show-o, and our best-performing
configuration, which integrates PARM with iterative DPO
for both reward model guidance and test-time verification.
Our results demonstrate that this approach significantly im-
proves the generation quality, achieving stronger alignment
between the generated images and the input text prompts.



The early-stage images are too blurry The later-stage images are too similar

Text Prompt:  “Arefrigerator.”

“A microwave oven.”

Text Prompt:  “Abook with a beautiful cover.”

Text Prompt:  “Acup.”

Text Prompt:  “Acarrot in front of the TV.”

Figure 1. Visualization of Early-stage and Later-stage Images. We visualize the generated images in the intermediate steps of Show-
o [? ], where the early-stage images are too blurry to interpret, while the later-stage images are too similar to discriminate, posing great
challenges for PRMs to effectively evaluate.

Specifically, we observe that baseline models often gener- tures, and overall fidelity to the text prompt are preserved.
ates inaccurate spatial relationships between objects, pro-
duce strange appearances, or fail to precisely reflect object
attributes. In contrast, our approach consistently mitigates
such issues, ensuring that the spatial relations, object fea-



Table 1. Performance Comparison on the GenEval [? ] Benchmark. Compared to existing diffusion and autoregressive models, we
investigate the potential of Chain-of-Thought (CoT) reasoning strategies in text-to-image generation. ‘Zs.’, ‘Ft.’, and ‘It. DPO’ denote the
zero-shot, fine-tuned verifiers, and iterative DPO [? ], repsectively. PARM refers to our proposed Potential Assessment Reward Model
specialized for autoregressive image generation. We adopt the best-of-20 selection for test-time verifiers by default, and highlight the best
and second-best overall scores in green and red.

Test-time  Preference = Reward Single  Two . - Attribute
Model Verifier ~ Alignment Guidance | object object Counting  Colors  Position binding Overall
PixArt-a [? ] - - - 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1[?] - - - 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E2[? ] - - - 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL [? ] - - - 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD 3 (d=24) [? ] - - - 0.98 0.74 0.63 0.67 0.34 0.36 0.62
LlamaGen [? ] - - - 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Chameleon [? ] - - - - - - - - - 0.39
LWM [? ] - - - 0.93 0.41 0.46 0.79 0.09 0.15 0.47
SEED-X [? ] - - - 0.97 0.58 0.26 0.80 0.19 0.14 0.49
|- - - | 095 052 0.49 0.82 0.11 028 | 053
Zs. ORM - - 0.99 0.63 0.63 0.84 0.19 0.39 0.61
Ft. ORM - - 0.99 0.72 0.65 0.84 0.25 0.33 0.63
Zs. PRM - - 0.98 0.51 0.54 0.82 0.11 0.23 0.53
Ft. PRM - - 0.98 0.55 0.54 0.83 0.13 0.29 0.55
PARM - - 0.99 0.77 0.68 0.86 0.29 0.45 0.67
- DPO - 0.96 0.70 0.50 0.82 0.30 0.43 0.62
- It. DPO - 0.98 0.72 0.53 0.84 0.40 0.46 0.65
Show-o [? ] Zs.ORM  It. DPO - 099 079 063 085 044 0.50 0.70
Ft. ORM It. DPO - 0.98 0.80 0.62 0.83 0.59 0.54 0.72
PARM It. DPO - 0.98 0.83 0.64 0.84 0.59 0.62 0.74
- It. DPO Ft. ORM 0.98 0.80 0.62 0.83 0.59 0.54 0.72
- It. DPO PARM 0.97 0.75 0.60 0.83 0.54 0.53 0.69
Ft. ORM It. DPO Ft. ORM 0.98 0.84 0.64 0.85 0.66 0.52 0.75
PARM It. DPO PARM 0.99 0.86 0.67 0.84 0.66 0.64 0.77
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Figure 2. Comparison of Reward Models as Test-time Verifiers Figure 3. Comparison of Reward Models as Test-time Verifiers
with DPO Alignment. We adopt Show-o [? ] with DPO align- with Iterative DPO Alignment. We adopt Show-o [? ] with iter-
ment as the ‘Baseline with DPO’ and evaluate Best-of- NV selection ative DPO alignment as the ‘Baseline with It. DPO’ and evaluate

on the GenEval [? ] benchmark. Best-of-V selection on the GenEval [? ] benchmark.



“A couple is relaxing in a hammock under the shade of a tree.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt: “A leather jacket and a glass vase.”
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Figure 4. Qualitative Results using Our Reasoning Strategies. Show-o [? ] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.



“The fluffy towel and metallic hook hang on the wooden hook.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Figure 5. Qualitative Results using Our Reasoning Strategies. Show-o [? ] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.



“The fluffy white cat snuggled up next to the warm brown blanket.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Figure 6. Qualitative Results using Our Reasoning Strategies. Show-o [? ] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.



“The white shirt was on the black hanger.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Figure 7. Qualitative Results using Our Reasoning Strategies. Show-o [? ] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.



“The sleek bike zoomed down the smooth road and the bumpy trail.”

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt:

Baseline Model:

With Reasoning:

Text Prompt: “The leather wallet and keychain hang on the metallic hook by the wooden door.’

Baseline Model:

With Reasoning:

Figure 8. Qualitative Results using Our Reasoning Strategies. Show-o [? ] is adopted as the baseline model, and compared to our
best-performing reasoning strategy: integrating PARM with iterative DPO for both reward model guidance and test-time verification.



