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Abstract

Localizing events in videos based on semantic queries is
a pivotal task in video understanding research and user-
oriented applications like video search. Yet, current re-
search predominantly relies on natural language queries
(NLQs), overlooking the potential of using multimodal
queries (MQs) that incorporate images to flexibly represent
semantic queries, particularly when it is difficult to express
non-verbal or unfamiliar concepts in words. To bridge this
gap, we introduce ICQ, a new benchmark designed for lo-
calizing events in videos with MQs, alongside an evalua-
tion dataset ICQ-Highlight. To adapt and reevaluate ex-
isting video localization models for this new task, we pro-
pose 3 Multimodal Query Adaptation methods and a novel
Surrogate Fine-tuning strategy, serving as strong baseline
methods. ICQ systematically benchmarks 12 state-of-the-
art backbone models, spanning from specialized video lo-
calization models to Video Large Language Models. Our
extensive experiments highlight the high potential of using
MQs in real-world applications. We believe this is a first
step toward video event localization with MQs1.

1. Introduction
Localizing semantic events in videos has long been a promi-
nent task in the field of video understanding [5, 41, 64, 66,
88, 91, 97]. User-centric applications like streaming media
and short video platforms underscore the growing need to
parse video segments for video search and video highlight
or recommend video moments given user needs.

Conventional video event localization encompasses a
broad spectrum of related tasks explored in prior research,
such as video moment retrieval [20, 21, 53], highlight de-
tection [2, 42, 60], and video temporal grounding [14, 15,
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Figure 1. Localizing Events in Videos with Semantics Queries.
Fig. 1a: So far, the community has only focused on natural lan-
guage query-based video event localization as in [42]. Our bench-
mark ICQ focuses on a more general scenario: localizing events in
video with multimodal queries (MQs). Fig. 1b: Localizing video
events with MQs has broad applications: users often use brief,
ambiguous text queries like “swimming” or struggle to find pre-
cise terms when it comes to unfamiliar or abstract concepts. MQs
—like scribbles or example images— can help in such cases.

18, 23, 31, 73, 91]. A plethora of datasets and bench-
marks [6, 22, 42, 70] has been established for exploring
video event localization using Natural Language Queries
(NLQs) as semantic queries. Building on these founda-
tions, existing models have primarily focused on the NLQ
setting [1, 8–12, 15, 18, 22, 25, 42, 80].

However, with the increasing need for human users to
efficiently process massive video data online, multimodal

https://icq-benchmark.github.io/
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interaction with videos is a promising scenario. In other
words, texts should not be the only means of querying
events in videos. As the saying goes, “A picture is worth a
thousand words,” images act as a non-verbal language and
convey rich semantic meaning to describe events. For in-
stance, as illustrated in Fig. 1b, the query “swim” can refer
to various styles of swimming, such as freestyle, butterfly,
and backstroke. Using such an ambiguous query to local-
ize fine-grained events in videos may yield imprecise re-
sults. As users, we often opt for writing brief, simple text
queries over detailed descriptions, especially when it is hard
to find the exact wording, such as unfamiliar concepts (e.g.,
unknown objects) or abstract ideas (e.g., aesthetic or geo-
metric concepts). Additionally, for illiterate or cross-lingual
users where texting is challenging, allowing users to search
for events in videos through Multimodal Queries (MQs) like
images can also increase inclusivity.

MQs, also referred to as composed queries [4, 30, 34, 77]
in other contexts, offer practical benefits for video event lo-
calization. As illustrated in Fig. 1, using intuitive queries
like user-drawn “scribble images” or example images as ref-
erences can enhance human-computer interaction, particu-
larly in the scenarios described above. While using MQs
for video event localization may seem straightforward and
intuitive, several questions remain: (1) visual queries can
introduce irrelevant or even conflicting details unrelated to
the target events, and (2) visual queries align only seman-
tically with target video events, while distribution shifts in
image styles are inevitable. How can models adapt to this
more diverse and flexible MQ setting compared to the con-
ventional NLQ-based task?

To address these questions, we propose a new task: lo-
calizing events in videos with MQs. We formulate an MQ
consisting of a reference image, which conveys the core
semantics of the query, and a refinement text for adjust-
ing query details optionally. This enables a more flexible
and versatile application of MQs. To bridge the research
gap, we introduce ICQ (Image-Text Composed Queries),
as the first benchmark for this task, along with a new eval-
uation dataset, ICQ-Highlight, with synthetic reference im-
ages and human-curated queries as a testbed for our task.
Considering that reference images in MQs may vary signif-
icantly from videos in terms of styles, we define 4 reference
image styles to assess performance across diverse scenarios.

Another gap to mind is that existing models designed
for NLQs do not seamlessly accommodate MQs. This
raises the question: how can we adapt these models for
MQs? To address this, we propose 2 Multimodal Query
Adaptation (MQA) approaches, Language-Space MQA and
Embedding-Space MQA, to enable preceding models as
backbone models to integrate MQs. Within these ap-
proaches, we introduce 3 training-free adaptation meth-
ods (MQ-Cap, MQ-Sum,VQ-Enc) along with the Surrogate

Fine-tuning on Pseudo-MQs strategy, SUIT, which together
establish our adaptation as a SOTA baseline for video event
localization using MQs. We have selected and evaluated a
broad spectrum of 12 backbone models, from specialized
models to Video Large Language Models (Video LLMs).

Our study demonstrates that existing models can effec-
tively adapt to our new benchmark with MQA, establishing
a solid baseline for future studies. A key insight from our
findings is that, despite the potential semantic gap between
MQ and NLQ, MQs remain effective for video event lo-
calization. Notably, even when MQs are minimalistic and
abstract, such as scribble images, model performance is not
strictly limited, envisioning new application scenarios.

Our contributions are summarized as follows:
1. We introduce a new task, video event localization with

MQs, alongside a new evaluation benchmark, ICQ, with
an evaluation dataset, ICQ-Highlight;

2. We propose 3 MQA methods and Surrogate Fine-tuning
on Pseudo-MQs strategy to adapt NLQ-based models;

3. We systematically evaluate the combination of MQA
methods and 12 SOTA backbone models ranging from
specialized models to large-scale Video LLMs;

4. Our comprehensive experiments show that our MQA
methods offer a powerful approach for adapting existing
models to ICQ. These findings highlight the promising
potential of using MQs in video event localization.

2. Related Work

2.1. Localizing Event in Videos with NLQs
Query-based video temporal localization has been a long-
standing research topic and is an umbrella of several related
tasks. According to their scenarios and motivation, they can
be further categorized into several similar but slightly dif-
ferent tasks. Video moment retrieval [46, 52, 56–58, 90, 93,
96] aims to localize a video segment based on a textual cap-
tion query that describes events in the video. Video tempo-
ral grounding/localization [19, 29, 48, 49, 61, 62, 89, 92, 94]
with NLQs aims to determine the video segment that cor-
responds with the textual description and usually serves
downstream Question-Answering task [3, 84, 91, 98] and
aims to provide relevant segments in videos. Other sim-
ilar yet less relevant tasks include video highlight detec-
tion [2, 42, 60, 70] and action detection; these tasks also in-
volve localizing video segments but with an implicit query
or a category-level action label. Our benchmark steps to-
ward localizing video events with MQs, which underline
a composed query of images and text, which are different
from other works, as a semantic search for events in videos.

Regarding the methodology, a line of works is focused
on NLQ-based video moment retrieval/ video temporal
grounding tasks: this includes two-stage (i.e. proposal-
based) models [47] that firstly generate moment candidates



Figure 2. Examples of ICQ-Highlight. Multimodal queries consist of a reference image and a re�nement text. We consider 4 different
reference image styles: scribble, cartoon, cinematic, and realistic. They describe a target event that corresponds to moments or segments
in original videos and are equivalent to natural language queries in the original dataset [42]. Re�nement texts add eithercomplementary
information if reference images are minimal like for scribble images, orcorrective information if reference images are more complicated.

and then �lter out the matched moment based on the query
and one-stage (i.e. proposal-free) models [9, 67, 92], in-
cluding DETR [7]-based models have been widely em-
ployed in a line of work [35, 42, 59, 60, 71, 86]. More
recent works [44, 54, 83, 87] attempt to unify multiple
video localization tasks, including video moment retrieval
and highlight detection in a single framework. In addi-
tion, with the large-scale LLMs gaining increasing atten-
tion, temporal grounding has also been adopted as a core
module in MLLMs like SeViLA [91], InternVideo2 [81],
TimeChat [66], VTimeLLM [33],etc. [95, 100].

2.2. Multimodal Query for Image/Video Tasks

Using MQs is a practical and important scenario for holistic
image/video retrieval [13, 24, 28, 34, 36, 37, 40, 55, 63, 68,
72, 74, 77–79, 82, 85]. Yet, it is necessary to note that video
event localization with MQsdiffers from image/video re-
trieval tasks, which primarily involve instance-level simi-
larity matching. Temporal localization requires dense video
processing, signi�cantly increasing the task complexity.

For video localization tasks, [99] is the �rst work to
use image queries to localize unseen activities in videos to
our knowledge. [75] also considers visual queries in video
event localization but limits to visual-audio data. More re-
cently, [27] proposes to ground videos spatiotemporally us-
ing images or texts, although their queries are still limited
to object or action levels. To the best of our knowledge, our
work is the�rst to attempt localizing events in videos using
multimodal semantic queries.

3. Video Event Localization with Multimodal
Queries: A Testbed

In the following section, we will elaborate on the de�nition
of our new task, the benchmark ICQ, and ICQ-Highlight.

3.1. Task De�nition

We de�ne a multimodal query (MQ)qm as consisting of
a reference imagevref accompanied by a re�nement text
t ref for minor adjustments to localize a target event that
corresponds to the query semantically. The reference image
captures the key semantics of the target event, while the re-
�nement text provides extra information that can be either
complementaryor corrective. This enables MQs to be more
adaptable to real-world applications.

Given the queryqm , the model predictsall the relevant
segments or moments[� start ; � end ]. We employ Recall and
mean Average Precision as the evaluation metrics for this
task as NLQ-based localization.

Reference ImageReference imagesvref visually describe
the semantics of an event in a video. They can be simple
scribble images with minimal strokes that describe an event
succinctly, effectively summarizing an event for non-verbal
semantic queries in video localization or more detailed web-
crawled images that depict semantically relevant scenes in
a video. As illustrated in Fig. 2, reference images describe
semantically similar scenes yet might vary in details as tar-
get videos. In practice, visual queries can differ in style,
which may impact model performance. Therefore, we ex-



Figure 3. Multimodal Query Adaptation (MQA). We propose 3 MQA methods to bridge the current gap between natural language
query-based models and our multimodal query-based benchmark: MQ-Cap, MQ-Sum, and VQ-Enc and MQ-Sum(+SUIT) enhanced by
Surrogate Fine-tuning on Pseudo-MQs (MQ-Sum(+SUIT)) strategy, to adapt MQs to the conventional NLQ-based backbones.

plore multiple reference image styles, as detailed in the sub-
sequent section, to assess whether the model maintains con-
sistent performance across various styles.

Re�nement Texts Re�nement texts refer to simple phrases
to eithercomplementor correctdescriptions that are either
missing or contradictory in the reference images. This is
particularly practical in real-world applications, as refer-
ence images often do not semantically align perfectly with
the target video event. We identify 6 different types of re-
�nement texts that can be applied to various aspects of the
reference image semantics: “object”, “action”, “relation”,
“attribute”, “environment”, and “others” as shown in Fig. 8
in Appx. B.3. This categorization is designed for elements
of a semantic scene graph [38] and we borrowed it to sum-
marize different semantic elements of the MQs.

3.2. Dataset Construction

We introduce our new evaluation dataset, ICQ-Highlight, as
a testbed for ICQ. This dataset is built upon the validation
set of QVHighlights [42], a popular NLQ-based video lo-
calization dataset. For each original query in QVHighlights,
we construct multimodal semantic queries that incorporate
reference images paired with re�nement texts. Consider-
ing the reference image style distribution discussed earlier,
ICQ-Highlight features 4 varied styles based on different
image styles. Detailed statistics can be found in Appx. B.

Reference Image GenerationWe generate reference im-
ages based on the original NLQs and re�nement texts using
a suite of state-of-the-art Text-to-Image models, including

DALL-E-21 and Stable Diffusion2. For the reference image
styles mentioned earlier, we select 4 representative styles:
scribble , cartoon , cinematic , andrealistic .
These styles effectively capture a variety of real-world sce-
narios such as user inputs, book illustrations, television
shows, and actual photographs, where images are often used
as queries.

Data Annotation and PreprocessingWe emphasize the
meticulous crowd-sourced data curation and annotation ef-
fort applied to QVHighlights for 2 main reasons: (1) To in-
troduce re�nement texts, we purposefully modify the orig-
inal semantics of text queries in QVHighlights to generate
queries that are similar yet subtly different; (2) Given that
the original queries in QVHighlights can be too simple and
ambiguous to generate reasonable reference images, we add
necessary annotations to ensure that the generated image
queries are more relevant to the original video semantics.
We employed human annotators to annotate and modify the
NLQs. Each query is annotated and reviewed by differ-
ent annotators to ensure consistency. Further details can be
found in the Appx. B.

4. Adapting Multimodal Query

To explore the performance of preceding NLQ-based video
localization methods on ICQ, we propose 2 Multimodal
Query Adaptation (MQA) (in Sec. 4.1) strategies to bridge

1https://openai.com/index/dall-e-2/
2https://stability.ai/stable-image



the gap between natural language queries (NLQs) and
multimodal queries (MQs): Language-Space MQA and
Embedding-Space MQA. Among them, we propose 3
training-free methods that adapt MQs to NLQs and a
parameter-ef�cient �ne-tuned (PEFT)-based method tai-
lored for MQA task with a novel Surrogate Fine-tuning
strategy to tackle data insuf�ciency (in Sec. 4.2). In total,
we have benchmarked 12 video event localization models
(in Sec. 4.3) for a thorough evaluation.

4.1. Multimodal Query Adaptation

In the conventional paradigm, input NLQstq are embedded
in a high-dimensional space as query embeddingseq. A
common practice is leveraging CLIP [65] text encoder as
the query encoder shown in Tab. 6 in Appx. C.2.

To align the MQs with pre-trained NLQs, we cate-
gorize MQA by different adaptation stages: Language-
Space MQA, where MQs are transcribed to NLQs, and
Embedding-Space MQA, where MQs are directly encoded
as query embeddings, as illustrated in Fig. 3.

For Language-Space MQA, we �rst propose 2 training-
free methods, MQ-Captioning (MQ-Cap) and MQ-
Summarization (MQ-Sum), to leverage the power of
MLLMs. MQ-Cap uses MLLMs as acaptionerto caption
reference images and LLMs as areviserto integrate re�ne-
ment texts. In contrast, MQ-Sum utilizes MLLMs to di-
rectly summarizereference images and re�nement texts in
one step. Generated text queries are denoted bytq.

For Embedding-Space MQA, we propose Visual Query
Encoding (VQ-Enc) to embed the reference images as query
embeddingseq. This is based on the precondition that all
selected models employ a dual-stream pre-trained encoder
that embeds image/text in a joint embedding space.

Nevertheless, such methods still confront some perfor-
mance issues (discussed in Sec. 5), including i) different
prompt selection causes unstable performance; ii) MLLMs
tend to generate lengthy and less task-speci�c outputs,
which lead to NLQ distribution shift that backbone mod-
els rely on and harm the model performance. Therefore,
we also propose a �ne-tuning strategy for MQA, which is
called Surrogate Fine-tuning on Pseudo-MQs for MQA.

4.2. SUIT: Surrogate Fine­tuning on Pseudo­MQs

Fine-tuning MLLMs on the task of summarizing MQs could
counteract the impact of selective prompt engineering and
mitigate the distribution shift between original NLQs and
regenerated NLQs in Language-Space MQA.However, an
underlying challenge for �ne-tuning lies in the lack of train-
ing data for MQ-based localization. Compared to establish-
ing an evaluation testbed, the larger-scale training data is
more time- and labor-intensive. Besides, synthetic training
data could pose risks of over�tting on generation bias and
artifacts in the model, which are supposed to be avoided.

Figure 4. Surrogate Fine-tuning on Pseudo-MQs (SUIT).for
MQ-Sum. To solve the issue of training data de�ciency, we pro-
pose an automatic pseudo-MQ generation pipeline to construct a
“surrogate” dataset for �ne-tuning MQ-Sum.

To overcome this challenge, we propose a novel strategy,
SUrrogate FIne-Tuning (SUIT) on Pseudo-MQs, to allevi-
ate the training data de�ciency issue.

As illustrated in Fig. 4, SUIT consists of 2 steps:

Automatic Pseudo-MQ Generation PipelineTo deal with
the insuf�cient training data problem, we propose leverag-
ing the abundant image-text datasets like Flickr30K [39]
and COCO [45] to generate pseudo-MQs. We automate this
generation process by leveraging GPT3.5 to convert each
caption in the datasets to a pair of a “forged” caption and a
re�nement text that re�ects the forge. As a result, the orig-
inal image and the re�nement text constitute a pseudo-MQ
that is equivalent to a forged caption semantically.

Surrogate Fine-tuning on Pseudo-MQsWe further utilize
generated pseudo-MQs as inputs and �ne-tune MLLMs to
generate a summarizing caption as in MQ-Sum. Distorted
captions are used as supervision to �ne-tune the model with
the next-token prediction loss and the PEFT approach as a
surrogate training task. In this way, the MLLMs are �ne-
tuned to generate task-speci�c and formatted outputs akin
to the target task. Then, we can transfer the �ne-tuned
MLLMs to our ICQ-Highlight dataset for evaluation.

4.3. Backbone Model Selection

We have selected and benchmarked 12 models speci�cally
designed for video event localization with NLQs. Par-
ticularly, we categorize the selected models as follows:
(1) Specialized modelsuse natural language as a seman-
tic query and are targeted at video moment retrieval tasks.
We have selected a series of models including Moment-
DETR[42], QD-DETR[60], EaTR[35], CG-DETR[59], and



Model scribble cartoon cinematic realistic
R1@0.5 R1@0.7 R1@0.5 R1@0.7 R1@0.5 R1@0.7 R1@0.5 R1@0.7

V
Q

-E
nc

Moment-DETR (2021) 12.55 5.69 13.38 6.59 14.36 6.01 14.88 6.53
QD-DETR (2023) 15.91 9.12 14.88 8.62 13.90 8.49 14.62 8.36
QD-DETRy (2023) 15.65 10.03 12.60 6.79 12.34 6.72 12.34 7.44
EaTR (2023) 19.86 13.00 19.91 12.99 21.15 13.45 21.48 13.38
CG-DETR (2023) 22.90 13.00 24.93 13.58 23.24 13.12 24.74 14.23
TR-DETR (2024) 17.92 11.19 17.36 11.10 15.14 9.86 15.60 9.53
UMTy (2022) 5.43 2.85 4.77 2.09 5.22 2.35 4.57 2.42
UniVTG (2023) 21.93 13.00 23.89 13.64 22.78 13.19 22.52 12.79
UVCOM (2023) 17.08 9.77 16.78 10.97 17.36 11.68 17.10 11.23

M
Q

-C
ap

Moment-DETR (2021) 44.83(± 2.7) 27.97(± 2.2) 46.02(± 1.5) 29.36(± 0.9) 46.89(± 0.7) 30.35(± 1.2) 47.16(± 1.5) 30.53(± 0.8)

QD-DETR (2023) 48.92(± 4.1) 33.57(± 3.3) 52.87(± 0.8) 36.01(± 1.3) 54.01(± 0.7) 37.29(± 0.5) 53.07(± 0.8) 37.53(± 1.1)

QD-DETRy (2023) 50.15(± 4.6) 34.67(± 3.9) 53.53(± 1.3) 38.30(± 1.2) 53.37(± 0.6) 37.93(± 0.5) 53.39(± 1.0) 38.47(± 0.8)

EaTR (2023) 49.20(± 3.2) 34.82(± 3.5) 50.50(± 0.6) 35.27(± 0.7) 51.76(± 0.5) 36.92(± 0.7) 52.33(± 0.5) 37.01(± 0.3)

CG-DETR (2023) 50.65(± 3.5) 36.37(± 2.9) 56.26(± 0.7) 40.82(± 0.7) 54.53(± 0.9) 39.32(± 0.8) 56.72(± 0.7) 41.79(± 1.2)

TR-DETR (2024) 50.99(± 3.3) 35.55(± 3.7) 55.37(± 1.0) 39.92(± 2.0) 56.03(± 1.0) 40.69(± 0.9) 56.94(± 0.5) 41.99(± 0.3)

UMTy (2022) 44.76(± 3.5) 29.41(± 3.0) 48.15(± 1.7) 32.18(± 1.6) 49.96(± 0.9) 33.90(± 0.9) 48.83(± 1.0) 34.09(± 1.2)

UniVTG (2023) 47.50(± 3.1) 31.58(± 3.0) 49.50(± 0.8) 33.09(± 1.1) 50.98(± 0.2) 33.36(± 0.6) 51.42(± 1.1) 43.75(± 0.2)

UVCOM (2023) 50.99(± 3.6) 37.36(± 3.1) 54.39(± 0.5) 40.06(± 1.0) 55.88(± 0.7) 40.88(± 0.5) 54.92(± 0.9) 41.08(± 0.9)

SeViLA (2023) 17.37(± 1.3) 10.56(± 0.8) 22.72(± 0.8) 15.31(± 0.7) 25.94(± 0.1) 16.99(± 0.3) 26.83(± 0.8) 16.83(± 0.6)

TimeChat (2024) 6.63(± 0.8) 3.07(± 0.7) 8.24(± 1.0) 3.62(± 0.8) 8.15(± 0.6) 3.15(± 0.4) 7.70(± 0.5) 3.17(± 0.5)

VTimeLLM (2024) 16.24(± 0.9) 6.98(0.4) 19.49(± 0.4) 7.86(± 0.2) 20.9(± 0.4) 8.64(± 0.4) 20.75(± 0.5) 8.67(± 0.2)

M
Q

-S
um

Moment-DETR (2021) 42.00(± 3.3) 25.14(± 3.0) 44.56(± 2.4) 27.24(± 2.1) 43.73(± 2.0) 27.00(± 1.8) 44.34(± 2.6) 27.74(± 2.0)

QD-DETR (2023) 45.56(± 3.3) 30.44(± 3.0) 49.09(± 3.8) 33.64(± 3.2) 48.89(± 3.5) 32.66(± 3.1) 47.83(± 4.1) 32.86(± 3.8)

QD-DETRy (2023) 46.57(± 3.8) 32.52(± 3.6) 49.30(± 4.3) 34.12(± 4.2) 48.83(± 3.2) 34.16(± 3.4) 49.13(± 4.4) 33.83(± 3.1)

EaTR (2023) 45.79(± 3.0) 32.67(± 2.9) 48.45(± 2.9) 32.96(± 2.7) 48.24(± 3.8) 33.35(± 3.5) 48.69(± 3.7) 33.85(± 2.5)

CG-DETR (2023) 47.07(± 4.2) 33.14(± 4.1) 51.46(± 3.1) 36.49(± 2.7) 50.59(± 3.4) 36.08(± 3.6) 51.91(± 3.5) 36.58(± 2.4)

TR-DETR (2024) 46.44(± 4.4) 33.23(± 3.8) 51.35(± 3.2) 36.14(± 2.3) 51.92(± 3.8) 36.29(± 3.7) 52.87(± 4.0) 36.77(± 3.4)

UMTy (2022) 43.88(± 3.4) 29.28(± 1.9) 45.39(± 2.8) 29.98(± 2.4) 45.37(± 2.3) 30.01(± 2.2) 46.35(± 2.0) 30.27(± 1.0)

UniVTG (2023) 44.98(± 3.3) 27.99(± 2.7) 46.19(± 3.5) 30.37(± 2.4) 47.22(± 3.3) 29.90(± 2.5) 50.39(± 3.3) 30.33(± 2.4)

UVCOM (2023) 46.62(± 3.8) 33.40(± 3.4) 51.48(± 4.1) 36.92(± 3.7) 50.91(± 5.3) 36.58(± 4.5) 51.18(± 3.7) 36.23(± 3.4)

SeViLA (2023) 17.89(± 1.9) 10.65(± 1.5) 27.47(± 3.5) 16.98(± 1.9) 27.76(± 2.5) 17.77(± 1.5) 28.61(± 3.3) 17.30(± 2.0)

TimeChat (2024) 6.58(± 0.1) 2.76(± 0.5) 7.38(± 1.1) 3.39(± 0.8) 7.51(± 0.9) 3.63(± 0.8) 5.73(± 1.2) 4.49(± 3.3)

VTimeLLM (2024) 16.95(± 1.4) 7.40(± 0.1) 19.19(± 0.8) 7.8 (± 0.3) 20.23(± 0.4) 8.29(± 0.3) 20.53(± 1.5) 8.11(± 0.5)

M
Q

-S
um

+ SUIT
Moment-DETR (2021) 48.59(± 0.9) 31.85(± 0.7) 48.27(± 0.6) 31.31(± 0.4) 47.58(± 0.5) 31.52(± 0.5) 47.25(± 0.2) 30.83(± 0.6)

QD-DETR (2023) 55.27(± 0.5) 39.86(± 0.4) 53.45(± 0.6) 37.94(± 0.3) 53.36(± 0.3) 38.39(± 0.6) 53.79(± 0.5) 38.92(± 0.1)

QD-DETR†(2023) 55.20(± 0.5) 39.82(± 0.7) 54.60(± 0.4) 40.44(± 0.6) 54.28(± 0.4) 40.31(± 0.6) 53.52(± 0.8) 38.97(± 0.1)

EaTR (2023) 53.63(± 0.8) 39.23(± 0.5) 50.63(± 0.4) 37.40(± 0.6) 51.67(± 0.5) 38.50(± 0.4) 50.78(± 0.4) 37.19(± 0.5)

CG-DETR (2023) 55.83(± 0.6) 41.41(± 0.3) 55.42(± 0.8) 39.88(± 0.6) 56.37(± 0.8) 41.14(± 0.6) 55.47(± 0.9) 40.17(± 0.5)

TR-DETR (2024) 58.85(± 0.4) 43.08(± 0.4) 57.19(± 0.2) 41.31(± 0.4) 57.35(± 0.5) 41.92(± 0.9) 57.39(± 0.4) 42.64(± 0.3)

UMT†(2022) 49.71(± 0.3) 35.10(± 0.3) 50.01(± 0.8) 35.16(± 0.6) 50.25(± 0.6) 35.18(± 0.5) 49.85(± 0.4) 34.60(± 0.7)

UniVTG (2023) 51.26(± 0.4) 34.07(± 0.7) 49.36(± 0.3) 33.24(± 0.5) 51.0(± 0.5) 34.4(± 0.7) 50.65(± 0.6) 33.48(± 0.6)

UVCOM (2023) 55.33(± 0.4) 42.03(± 0.7) 55.48(± 0.2) 41.66(± 0.1) 55.43(± 0.4) 41.88(± 0.4) 54.43(± 0.4) 41.30(± 0.3)

Table 1. Model performance (Recall) on ICQ.We highlight the best score initalic for each adaptation method and the overall best scores
in bold. For MQ-Cap and MQ-Sum, we report the standard deviation of 3 runs with different prompts and for MQ-Sum(+SUIT) we report
the average performance with different seeds in training.y uses extra audio modality.

TR-DETR[71]; (2)Uni�ed frameworksare aimed to solve
multiple video localization tasks within one model, such as
moment retrieval, highlight detection, and video summa-
rization. We have selected UMT[54], UniVTG[44], and
UVCOM[83] as strong baselines; (3)LLM-based Mod-
els features the power of Large Language Models, which
prove to be a powerful and general head for varied video
tasks. We have selected SeViLA [91], TimeChat [66], and
VTimeLLM [33] as representatives of LLM-based models.
We apply different MQA methods on top of the pre-trained
model checkpoints on the original QVHighlights dataset.

5. Experiments and Analysis

In this section, we attempt to answer the following ques-
tions: (1) Can and how well MQs effectively localize events

in videos? (2) Can varied styles of reference images and re-
�nement texts impact the results?

5.1. Experimental Setup

Implementation We employ LLaVA-mistral-1.6 [50, 51]
as a strong MLLM in MQ-Cap, MQ-Sum (with and with-
out SUIT) and GPT-3.5 as a reviser in our MQ-Cap adap-
tation. We believe that the performance of these models is
representative of the SOTA capabilities of MLLMs and is
fairly compared across different MQA methods. For VQ-
Enc, we utilize the corresponding CLIP Visual Encoder,
as all models typically employ the CLIP Text Encoder for
text query encoding. In VQ-Enc, we omit re�nement texts
and only use the reference image. In MQ-Sum(+SUIT), we
construct our pseudo-MQs with89 420training data from



Figure 5. Controlled Experiment. We plot the model perfor-
mance (R1@0.7) on 2 subsetsD ret andD gen . We use the dashed
line to indicate the same performance on both datasets.

Flickr30K and COCO and implement LoRA [32] as a com-
mon PEFT method with rank32, alpha64, and a learning
rate of2 � 10� 4 on the language model of LlaVA. More
implementation details about datasets and training can be
found in the Appx. C.1.

Evaluation Metrics We evaluate models on our new
testbed ICQ-Highlight. For evaluation, we report both Re-
call R@1 with IoU thresholds0:5 and0:7, mean Average
Precision with IoU threshold 0.5 and the average over mul-
tiple IoU thresholds [0.5:0.05:0.95] as standard metrics for
video moment retrieval and localization [42, 91], where
IoU (Intersection over Union) thresholds determine if a pre-
dicted temporal window is positive.

Figure 6. t-SNE Visualization of Queries after Language-
Space Multimodal Query Adaptation. Original NLQs have sim-
ilar distributions with closer modes as MQ-Sum(+SUIT) other
than the other two training-free methods, which shows that �ne-
tuned MLLM can generate closer queries to original NLQs.

5.2. Results & Analysis

We present the pairwise performance of 12 models com-
bined with 4 adaptation methods on ICQ in Tab. 1 and Tab. 8
in Appx. D.1. For MQ-Cap and MQ-Sum methods, we have
conducted 3 runs with different prompts and reported the
average performance and standard deviation.

How do Video Event Localization with MQs work on
different image styles?Firstly, we aim to draw a key con-
clusion from the results. We �nd all adaptation methods
perform consistently across different styles and therefore
suggest that they could understand the MQs well, partic-
ularly for styles includingcartoon , cinematic , and
realistic ; the model performance is close to each other.
For scribble , all models show marginally worse perfor-
mance, and even both MQ-Cap and MQ-Sum methods have
a more signi�cant standard deviation, which re�ects that it
is heavily in�uenced by the prompts. This can be explained
by the fact thatscribble images are more minimal and
abstract in semantics and more challenging to interpret.
Surprisingly, in spite of being more abstract and simpler,
the model performance onscribble reference images is
close to other reference image styles. This demonstrates the
potential of usingscribble as MQs in real-world video
event localization applications like video search.

Which is the best MQA method?Among all thetraining-
freemethods, we �nd that MQ-Cap can achieve the best per-
formance and is more robust to different prompts compared
to other adaptation methods by an average margin of3:6%
on all styles. We observe that both utilizing MLLMs for
captioning reference images, MQ-Sum suffers more than
MQ-Cap adaptation regarding performance and is more
sensitive to prompts for all reference styles, which can be
observed from the higher standard deviation, showing ask-
ing MLLMs to caption and summarize the re�nement texts
is less controllable. To conclude, captioning images is still
a golden method since MLLMs and LLMs are powerful
enough to generate faithful captions.

Notably, MQ-Sum(+SUIT) shows anon-marginalim-
provement (4:3%-9:7%) and more stable performance
across all backbone models. This proves the ef�cacy and
transferability of our SUIT strategy. To verify our motiva-
tion that training-free MQA can output uncontrollable text
queries that have a distribution shift from the original NLQs
on which the backbones are trained, we visualize the em-
beddings of original NLQs and adapted MQs in Fig. 6 with
t-SNE [76]. It shows that original NLQs have similar distri-
butions as MQ-Sum(+SUIT) other than the other 2 training-
free methods for all different image styles.

However, the performance gap between our MQ setting
and the original NLQ benchmark (refer to Appx. D.5) is still
remarkable, which shows that the query semantics are more
or less distorted across modalities.



Model scribble cartoon cinematic realistic
R1@0.5 R1@0.7 R1@0.5 R1@0.7 R1@0.5 R1@0.7 R1@0.5 R1@0.7

Moment-DETR 45.15(-2.7% ) 28.72(-3.3% ) 43.60(-7.1% ) 27.94(-5.8% ) 44.06(-7.3% ) 29.70(-2.8% ) 44.06(-9.3% ) 28.98(-6.5% )

QD-DETR 49.81(-4.0% ) 33.70(-5.4% ) 49.87(-6.6% ) 34.33(-6.3% ) 49.67(-9.3% ) 34.73(-8.1% ) 50.52(-5.7% ) 35.25(-7.4% )

QD-DETRy 51.29(-3.9% ) 36.03(-3.8% ) 48.69(-10.8% ) 33.88(-13.4% ) 49.48(-8.5% ) 34.99(-9.0% ) 49.93(-7.5% ) 35.05(-10.4% )

EaTR 52.01(+0.5% ) 37.77(+1.2% ) 47.45(-6.7% ) 33.09(-8.0% ) 48.56(-7.0) 34.33(-5.1) 49.61(-6.1% ) 35.64(-3.0% )

CG-DETR 51.42(-4.0% ) 37.84(-1.7% ) 49.35(-13.0% ) 35.90(-13.4% ) 48.89(-10.3) 34.79(-11.3) 51.04(-10.5% ) 36.55(-14.0% )

TR-DETR 52.01(-2.4% ) 37.19(-2.9% ) 51.04(-9.2% ) 36.62(-11.2% ) 50.00(-11.8) 36.03(-12.5) 52.28(-8.8% ) 37.53(-10.6% )

UMTy 46.25(-3.0% ) 31.57(-1.0% ) 45.82(-6.9% ) 30.61(-7.1% ) 46.34(-8.6% ) 29.96(-13.7% ) 46.08(-6.2% ) 31.85(-7.1% )

UniVTG 47.87(-3.8% ) 33.76(-2.2% ) 45.56(-9.4% ) 29.24(-11.5% ) 45.43(-11.2% ) 29.05(-13.9% ) 46.80(-9.3% ) 30.42(-12.4% )

UVCOM 52.26(-1.7% ) 39.39(+1.0% ) 51.50(-6.1% ) 37.99(-6.6% ) 50.98(-9.4% ) 36.75(-11.3% ) 51.70(-7.6% ) 37.53(-10.5% )

SeViLA 13.15(-30.3% ) 8.06(-29.3% ) 11.89(-49.8% ) 6.89(-57.0% ) 13.26(-49.0% ) 8.32(-51.5% ) 13.65(-49.1% ) 8.22(-51.1% )

Table 2. Model performance without re�nement texts. We employ MQ-Cap for methods without considering re�nement texts. The
performance drop highlighted in the parenthesis indicates that re�nement texts in ICQ-Highlight can help re�ne the semantics of the
reference images and localize the events better.

Across different backbone models,we �nd that models
that perform well in one adaptation method tend to per-
form well in others. For example, UVCOM and TR-DETR
consistently show high performance across MQ-Cap, MQ-
Sum, and VQ-Enc methods. We observe that more re-
cent models keep their outperforming performance on our
ICQ. Latest models, including UVCOM, TR-DETR, and
CG-DETR, tend to perform better across different adapta-
tion methods and reference image styles. In contrast, older
models like Moment-DETR consistently show lower per-
formance. LLM-based models cannot compete with other
specialized models without exception; this aligns with their
subpar performance on NLQ-based benchmarks [33, 66,
91]. In the next section, we �nd that model performance on
ICQ highly correlates with that on NLQ-based benchmark
QVHighlights. This shows that (1) our MQs share seman-
tics with the original benchmark; (2) the adaptation methods
and models could understand semantics from MQs.

5.3. Ablation Studies

Besides the benchmark, we conduct additional studies for
other intriguing questions in this section and in Appx. D.1.

Do Artifacts in synthetic reference images distort the
conclusion? The artifacts in our generated data are in-
evitable even with the best commercial Text-to-Image mod-
els so far. To understand the impact of generated images'
artifacts on model evaluation, we conduct a controlled ex-
periment by collecting a subset of MQs by crawling sim-
ilar images via the Google image search engine. Each
image in this retrieved subset has a corresponding gener-
ated reference image in a subsetDgen of ICQ-Highlight.
The retrieval criterion is that retrieved images should be
as similar as possible to the generated images in seman-
tics/style/details so that the generation artifacts are the only
control variable. The �nal subset comprises 84 samples
from 4 styles. We compare the model performance onD ret

andDgen . Our pre-assumption is that if generation artifacts
degrade the model performance largely, thenD ret should
perform better thanDgen . Otherwise,Dgen should perform

close toD ret . As shown in Fig. 5, model performance on
Dgen is close toD ret in general. This shows that generation
artifacts do not skew our �ndings largely, and our bench-
mark is still generalizable.

Importance of Re�nement Texts To assess the impact of
re�nement texts on video event localization using MQs, we
have evaluated model performance using only reference im-
ages as queries, omitting re�nement texts. We employ the
MQ-Cap adaptation without a modi�er for integrating re-
�nement texts. As shown in Tab. 2, we present the model
performance and their relative performance drop in percent-
age compared to those with re�nement texts. Models have
different scales of performance drop, which indicates that
re�nement texts help re�ne the semantics of reference im-
ages and localize the events. Additionally, we observe that
for scribble images, the performance drop is less pro-
nounced compared to other styles in that these images are
inherently minimalistic and less reliant on details.

6. Conclusion

In this work, we introduce a new benchmark, ICQ, marking
an initial step towards using multimodal semantic queries
for video event localization. We have found that our pro-
posed MQA and SUIT methods can accommodate conven-
tional models to MQs effectively, serving as effective base-
lines for this novel setting. Our �ndings con�rm that using
MQs for video event localization is practical and feasible.
Nonetheless, the �eld remains open to innovative model ar-
chitectures and training paradigms for MQs. We believe our
work paves the way for real-world applications that leverage
MQs to interact with video content.

Societal ImpactsUsing multimodal semantic queries for
video event localization brings prospects in real-world ap-
plications, such as assisting illiterate, pre-literate, or non-
speakers in cross-lingual situations, as it allows them to in-
teract with videos through images as a more accessible and
convenient approach.
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Localizing Events in Videos with Multimodal Queries

Supplementary Material

In this Appendix, we present the following:

• Additional information about the dataset ICQ-Highlight
and licenses for the datasets and models we have used;

• Additional technical implementations including prompts
of the benchmark ICQ;

• Extended experimental results due to page limits in the
main part.

A. Notations

We de�ne the key concepts along with the notations and
abbreviations used in this paper below.

Notation, Full Form, and De�nition

Notation Full Form De�nition

MQ Multimodal Query a semantic query that integrates image and text
NLQ Natural Language Query a semantic query expressed in text only
MQA Multimodal Query Adaptation an adaptation method for handling multimodal queries
SUIT Surrogate Fine-Tuning a �ne-tuning strategy that uses a surrogate training task
v ref reference image an image that conveys the main semantics of the query
t ref re�nement text a text used to adjust query details

Table 3. Notation Table

B. Dataset: ICQ-Highlight

B.1. License

The dataset and code are publicly accessible. We use stan-
dard licenses from the community and provide the follow-
ing links to the non-commercial licenses for the datasets we
used in this paper.

QVHighlights : https : / / github . com /
jayleicn / moment _ detr / blob / main / data /
LICENSE

Stability Diffusion :https : / / github . com /
Stability-AI/stablediffusion/blob/main/
LICENSE

B.2. Construction Pipeline

We base our model on the original annotation from
QVHighlights [42]. The whole pipeline, as shown in Fig. 7
consists of (1)annotation: We further conduct a quality
check on the annotations in the original dataset and �lter out
a few samples (details can be found in Sec. B.4). In order
to generate more relevant reference images, we manually
augment the original captions by adding new visual details
based on three frames extracted from the raw videos. To in-
troduce re�nement texts, we purposely alter certain details
of the captions to generate a new one. All annotations are
carried out by two individuals and evaluated by a third party

for accuracy. (2) We use the augmented and altered captions
to generate reference images with a suite of Text-2-Image
models, including DALL-E 2 and Stability Diffusion XL for
4 variants of styles. (3) We implement an additional qual-
ity check process for all generated images to eliminate and
regenerate images that might contain unsafe or counterintu-
itive content. We employ BLIP2 [43] to �lter out generated
images with lower semantic similarity with augmented cap-
tions than 0.2 and conduct a manual sanity check to control
the image quality.

Data Curation and Quality check Image generation can
suffer from signi�cant imperfections in terms of semantic
consistency and content safety. To address these issues, we
implement a quality check in 2 stages: (1) We calculate the
semantic similarity between the generated images and the
text queries using BLIP2 [43] encoders, eliminating sam-
ples that score lower than 0.2; (2) We perform a human
sanity check to replace images that are: i) semantically mis-
aligned with the text, ii) mismatched with the required ref-
erence image style, iii) containing sensitive or unpleasant
content (e.g., violent, racial, sexual content), counterintu-
itive elements, or noticeable generation artifacts.

B.3. Statistics

The dataset comprises 1515 videos and 1546 test samples
on average for each style. The exact numbers may vary
slightly across styles and are provided in the Appendix.

Tab. 4 presents the statistics for various reference im-
age styles in terms of the number of queries, videos, and
the presence of re�nement texts. Tab. 5 breaks down the
statistics of re�nement texts for different reference image
styles across various query types: object, action, relation,
attribute, environment, and others. The numbers of each
type can vary slightly depending on the different styles.

Reference
Image Style #Queries #Videos

#With
Re�nement Texts

#Without
Re�nement Texts

scribble 1546 1515 / 5
cinematic 1532 1502 1445 5

cartoon 1532 1501 1444 5
realistic 1532 1501 1446 4

Table 4. Statistics of Different Reference Image Styles

B.4. Details of Deleted Data

We removed four entries from the QVHighlight dataset
that could cause violent, sexual, sensitive, or graphic con-
tent in generation in the original natural language query as
listed:



Figure 7. Dataset Construction Pipeline:We base our model with original annotations from QVHighlights and introduce a pipeline
consisting of annotation, reference image generation, and quality check.

Figure 8. Distribution of Re�nement Text Types. Re�nement texts are designed to eithercomplementor correct the original semantics
of reference images. We identify 5 major types of re�nement texts, each targeting different semantic aspects: object, action, relationship,
attribute, environment, and others.

Reference
Image Style

#Queries
Object Action Relation Attribute Environment Others

scribble 594 242 50 162 343 70
cinematic 588 239 50 162 343 66

cartoon 590 239 48 161 341 68
realistic 586 241 50 161 341 70

Table 5. Statistics of Re�nement Texts

• “A graph depicts penis size.” (qid: 9737)
• “People mess with the bull statues testicles.” (qid: 7787)
• “People butcher meat from a carcass.” (qid: 4023)
• “Woman �lms herself wearing black lingerie in the bath-

room.” (qid: 7685)

C. Benchmark Details

In this section, we list the details of our selected back-
bone models, the implementation of our training-free MQA
methods, and SUIT strategy.

C.1. Implementation Details

Automatic Pseudo-MQs Construction We build the
pseudo-MQ dataset from image-text datasets Flickr30K and
COCO. We generate captions for the COCO dataset with
BLIP-2 [43]. To forge the original captions, we employ
GPT3.5 to process the pure-text captions of each image
with the prompts shown in Tab. 11. For each sample, we
randomly select one template and re�nement text type to
generate a forged caption and the corresponding forged part
as a re�nement text. In total, we construct a pseudo-MQ
dataset with89 420samples for training and4785samples
for validation.
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