LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene

Supplementary Material

This supplementary material includes video results for
scenes from the Multi-frequency datasets. In the follow-
ing sections, we first introduce additional implementation
details (Sec. 7). Moreover, we provide additional experi-
ments on frequency level evaluation from 2D to 3D on the
real dataset Mip-NeRF360-v2 (Sec. 8). Finally, we present
more experimental results (Sec. 9).

7. Additional Implementation Details
7.1. Dataset

We captured our dataset using two different cameras. We
collected normal-resolution images with a panoramic cam-
era to achieve a more comprehensive 360-degree field of
view for better scene structure reconstruction. And high-
resolution images were captured with a DSLR (Digital
Single-Lens Reflex) camera. To obtain camera poses, we
perform Structure from Motion reconstruction for both the
panoramic and high-resolution images. We use shared in-
trinsic between all images of the same camera model in
a scene, and calibrate using the OpenCV radial distortion
model. We then project the panoramic images into six
600x 600 perspective images, each with FOV of 60° to ac-
commodate the perspective camera model commonly used
in most NeRF models. We adopt a common dataset splitting
method, selecting one out of every eight panoramic/high-
resolution images as the test set, with the remainder consti-
tuting the training set.

7.2. Architecture details

We adopt a setup similar to Instant-NGP [31], utilizing 16
grid scales with the maximum resolution being 2048 x scene
size and the minimum resolution being 16, employing 2 fea-
ture channels per level. In our dataset, due to the larger
scene sizes, we set the size of the hash table storing fea-
ture vector for each level to 223 to mitigate the impact of
hash collisions on scene representation. For other general
scenes, we use an identical hash table size of 2!? to Instant-
NGP [31]. The fetched hash feature vectors are down-
weighted before being concatenated and fed to a one-layer
MLP with 64 hidden units to get the scene features and the
volume densities. Subsequently, the scene features are con-
catenated with the spherical harmonics encoding of the view
directions, which is then input to a subsequent two-layer
MLP of width 64 to yield the RGB colors.

7.3. Frequency Grid

To represent the frequency distribution in the 3D space, we
maintain a frequency grid with a resolution of 128 x AABB,

where AABB, short for Axis-Aligned Bounding Box, de-
notes the scene size. For each scene, we adjust the AABB
based on the 3D points from the SfM reconstruction to en-
sure it encompasses the majority of the 3D points. Each
grid cell stores the frequency level as a uint8 number.

Initialization. Once we have the 2D frequencies of all
training patches, we first calculate the 3D frequency of each
3D point p;. After that, each 3D point is reprojected to ob-
tain a set of observation patches {P;;|j = 1,...,n} and
derive a set of 3D frequencies {fsp,[j = 1,...,n} with
the depth of the point. To mitigate the influence of noisy
patches, we take the median of this set as the 3D frequency
fsp, for that point. Assuming that the frequencies at each
level are {f3p,|¢ = 0,...,n.}, we take the frequency level
¢; as argmin(| fsp, — fsp,|)- The frequency grid is then

¢

initialized to the maximum of the frequency levels of all 3D
points within the grid.

Re-weighting. Unlike Instant-NGP [31], which directly
concatenates feature vectors as the input for the tiny MLP,
we take into account the 3D frequency at that point and
re-weight different frequency components accordingly. In-
stead, we use the quantified frequency level ¢ as a threshold
and apply a down-weighting to frequency components that
are higher than /. We compute the down-weighting factor
w using an approximation for erf(z):

erf(z) ~ sign(z)\/1 — exp(—(4/7)x2) )

Updating. We update the grids after every 1024 training
iterations by the following steps. We first render the depth
of the center pixel of a training patch P;. Then, the 2D
frequency of the patch is projected to the corresponding 3D
point to obtain its 3D frequency fsp, and frequency level
¢;. Finally, the value ¢ of the frequency grid where the 3D
point resides is then updated to max(¢;, £).

Frequency-averaged sampling(FAS). We divides the
training batch into N segments based on the frequency
quantization results. The sampling frequency is evenly dis-
tributed within a preset range of [1, 3], meaning that the
highest frequency content is sampled with a probability
three times that of the lowest frequency. In our experiments,
we found that this is a more stable setting compared to di-
rectly using the frequency ratio as the sampling proportion.

7.4. Loss Functions

As described in the main paper, the training loss is defined
as

Ltotal :Ev'econ (éa Cgt) + /\depth['depth (d7 dgt)+

(10)
Adist Ldist(Sa, W),
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Figure 7. We test the effectiveness of frequency quantification on the real dataset NeRF-360-v2. (a) is a ground truth image from the
counter dataset. (b) is the colored point cloud after the 3D frequency initialization of all 3D points, where colors leaning towards blue
indicate lower frequencies and those towards red indicate higher frequencies. It can be observed that there is a trend of higher frequencies
with smaller depths. Moreover, different regions at the same depth also exhibit varying distributions of 3D frequencies. In (a), we selected
three patches with different frequency levels /3p 9, 11, and 13, represented by blue, green, and red, respectively. (c) is the rendering results
of these three patches at training frequency level £, ranging from 8 to 14. It can be noticed that details are not well recovered when /4, is
lower than the quantified ¢3p, and when ¢;, exceeds ¢3p, there is no significant improvement in the quality of the rendering images. (d)
shows the distribution of average SSIM Loss for patches of different frequency levels in the counter dataset at various training frequency
levels £:-. Once ¢y, reaches the quantified ¢3p, there is no significant decrease in loss.

where the first term L;ccon (€, Cg1) = /(€ —Cg)% +€isa
color reconstruction loss [2], ¢ is the rendered pixel color,
cq¢ is the ground-truth pixel color, and € = 10~%, and the
last term is the regularization loss.

The depth loss Lgep¢n of the sampled ray is defined by

Acdepth(da dgt) = (d - dgt)2 +e€ (11)
where the depth of a ray is computed by the weighted sum
of the sampled distance that d = ), w;t;, and {w;} are the
weights computed by the volume rendering. We only use
the depth loss in early training for pixels with GT depth
from the sparse point cloud to avoid incorrect geometry
structure.

The regularization loss 1is proposed by Mip-
NeRF360 [2]. We use it to prevent floaters and background
collapse, which is defined as

Si + sl+1 Sj + Sj+1
2

Edlst Sd7 +

-3 v
3 ng (si+1 — 8i),

12)

where sq is the set of normalized ray distances and w
is the set of weights. It penalizes the discreteness to en-
courage the formation of thinner surfaces. In contrast to
Mip-NeRF360 using a proposal network to obtain sampling
suggestions, we compute this discrete version of sampling
distribution regularization along the entire ray.

The hyperparameters Agist, Adeptn, are used to bal-
ance the data terms and the regularize; we set Ags¢ =
0.01, Ageptn = 0.001 for all experiments.
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Figure 8. Qualitative comparisons with the Instant-NGP [31] that
has a larger hash table size (Big) on the Mip-NeRF360-v2 [2] and
Tank and Temples [19] dataset.

Method room counter kitchen bonsai average
TensoRF 0.791  0.697 0.560 0.783  0.708
INGP-Base 0.893  0.845 0.857 0924  0.879
INGP-Big 0.900 0.868 0907 0922  0.900
Mip-NeRF360 0.913  0.895 0920 0939 0916
3D-GS 0914  0.905 0922 0938 0919
Ours 0.936  0.908 0931 0946 0.931

Table 4. SSIM on the Mip-NeRF360-v2 dataset

Method room counter Kkitchen bonsai average
TensoRF 0.419  0.469 0.516  0.389  0.448
INGP-Base 0.242  0.255 0.170  0.198  0.216
INGP-Big 0254 0.256 0.158  0.209  0.219
Mip-NeRF360 0.211  0.203 0.126  0.177  0.179
3D-GS 0.220  0.204 0.129  0.205  0.189
Ours 0.191 0.184 0.123  0.159  0.165

Table 5. LPIPS on the Mip-NeRF360-v2 dataset

8. Evaluate Frequency Level from 2D to 3D

In this section, we further demonstrate the effectiveness
of frequency quantification from 2D to 3D using the real
dataset Mip-NeRF360-v2.

Visualization of Frequency Distribution. As described
in the main paper, we reproject each 3D point from the
sparse point cloud back into all the observation images.
Then we calculate the 3D frequency set S based on all the
corresponding patches. The median of S is taken as the
3D frequency for that point. Fig. 7(b) shows a visualiza-
tion of the 3D frequency distribution of all 3D points after
initialization for the dataset counter in Mip-NeRF360-v2,
where the color of the points indicates the corresponding
3D frequency, with points closer to blue indicating a lower
frequency and those closer to red indicating a higher fre-
quency. Fig. 7(a) represents the ground truth image, where
the blue, green, and red boxes represent three patches with
3D frequencies from low to high as shown in Fig. 7(b).
Qualitative Results. Fig. 7(c) depicts the visual compari-
son of the rendering results under varying training frequen-
cies of the three patches mentioned above, where the boxed
patches represent the rendering results under the quantified

Method room counter kitchen bonsai average

TensoRF 26.88  23.39 23.12 2546 2471
INGP-Base 3031 2621 29.00  31.08  29.15
INGP-Big 30.19  27.27 30.86  30.57  29.72
Mip-NeRF360 31.40 29.44 32.02 3311 3149
3D-GS 30.63  28.70 30.32 3198  30.95
Ours 3145  29.19 3141 3275  31.20

Table 6. PSNR on the Mip-NeRF360-v2 dataset

3D frequency level ¢3p. It is clearly demonstrated that
when the training frequency level is lower than ¢s5p, the
network is unable to fully recover the detailed information.
Conversely, when the training frequency exceeds the quan-
tified 3D frequency, the network does not yield better results
either.

Quantitative Results. Furthermore, in Fig.7(d), the lines in
green, red, blue, and purple correspond to patches with 3D
frequency levels of 11, 12, 13, and 14, respectively. With
the escalation of the training frequency from 8 to 14, there
is a progressive reduction in the SSIM loss for the generated
patches. Upon reaching the quantified 3D frequency for
each patch with the training frequency, the SSIM loss reduc-
tion becomes more consistent. This observation suggests
two key points: firstly, the necessary minimum NeRF fre-
quency level for the complete reconstruction of the scene’s
diverse 3D frequency structures and textures is variable;
secondly, the 3D frequency estimation we employ for the
content provides an accurate reflection of their actual fre-
quencies.

9. More Experimental Details

9.1. Quantitative Results on Standard Datasets

We compare our methods against our baselines on the stan-
dard datasets whose scenes have a smaller frequency span
and size. The quantitative results are shown in the Tab. 2.
Here we show the qualitative comparisons with the Instant-
NGP [31], as depicted in Fig. 8. Our methods render sharper
and clearer high-frequency contents than the Instant-NGP,
Indicating that while our frequency-aware framework is de-
signed to handle high-quality model scene structures and
details in scenarios with significant frequency disparities, it
still generalizes well on standard datasets, enhancing ren-
dering quality, particularly in high-frequency details.

9.2. More Ablation Studies

Component Ablation. We conducted ablation experiments
in each scene, and the results are shown in Tab. 7. The re-
sults indicate that the impact of different features on overall
performance varies across scenes of different scales. In par-
ticular, in high-frequency scenes captured at close range,
such as the “Flower Shop”, the sampling interval adjust-
ment has a more pronounced effect. This tendency is par-
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Figure 9. Additional visual comparisons on the Multi-frequency dataset.

Setting FlowerShop Home DollsRoom MusicRoom PlantRoom Average
normal-res(600 < 600)

w/o Feature Re-weighting 28.19 32.93 34.12 33.46 3342 3242
w/o FAS 26.36 32.93 34.18 33.50 3359 3211
w/o Interval Adjustment 27.12 32.62 34.09 32.30 3296  31.82
Our Complete Model 28.23 3291 34.20 33.52 3336 3244
high-res(4032x3024)

w/o Feature Re-weighting 24.62 26.14 28.41 26.54 2455  26.05
w/o FAS 24.01 26.47 28.74 26.84 2398 2597
w/o Interval Adjustment 23.82 25.79 28.31 26.02 23.81 25.55
Our Complete Model 24.86 26.24 28.75 26.97 24.63  26.29

Table 7. Ablation Studies on Multi-frequency dataset

ticularly evident in large-scale datasets or close-range cap-
tures. As shown in Figure. 10, close-range high-frequency
content becomes blurred in the absence of sampling inter-
val adjustment, which aligns with the description in Sec-
tion 4.2 of the paper. Due to variations in the proportion
of high-frequency data within scenes, the efficacy of FAS
also varies. Balancing training batches sometimes enhances
high-frequency effects, while at other times it may diminish
them, depending on the distribution of scene data. Feature
re-weighting enhances the network’s efficiency in utilizing
various frequency ranges, particularly when there is abun-
dant scene content and limited network capacity.

9.3. Per-Scene Metrics

We provide the per-scene results on the Multi-frequency
dataset, Tanks&Temples dataset, and Mip-NeRF360-v2
dataset in Tab. 14 - 5. The results are reported in the met-
rics of PSNR, SSIM, and LPIPS. We provide more visual
comparisons on the Multi-frequency dataset in Fig. 9.
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Figure 10. Additional visual comparisons with different settings of our method.

Table 8. PSNR on the Multi-frequency dataset(structure view)

PSNR FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 24.36 29.63 30.78 30.69 28.94 28.88
INGP-Base 25.31 30.10 32.07 31.78 32.07 30.27
INGP-Big 26.22 30.94 32.75 32.25 32.67 30.97
Mip-NeRF360 26.90 32.01 31.28 32.59 31.15 30.79
3D-GS 27.02 32.08 31.30 32.74 31.17 30.85
Ours 28.23 3291 34.2 33.52 33.36 32.44
Table 9. SSIM on the Multi-frequency dataset(structure view)
SSIM FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 0.740 0.884 0.893 0.890 0.862 0.854
INGP-Base 0.791 0.902 0.925 0.921 0.924 0.893
INGP-Big 0.830 0.918 0.934 0.930 0.933 0.909
Mip-NeRF360 0.851 0.935 0.903 0.923 0.896 0.906
3D-GS 0.846 0.931 0.900 0.910 0.899 0.897
Ours 0.890 0.942 0.946 0.931 0.937 0.929
Table 10. LPIPS on the Multi-frequency dataset(structure view)
LPIPS FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 0.310 0.230 0.233 0.240 0.266 0.256
INGP-Base 0.267 0.205 0.206 0.207 0.196 0.216
INGP-Big 0.210 0.169 0.181 0.184 0.172 0.183
Mip-NeRF360 0.181 0.158 0.208 0.187 0.206 0.188
3D-GS 0.177 0.164 0.217 0.189 0.211 0.191
Ours 0.148 0.130 0.146 0.162 0.152 0.148
Table 11. PSNR on the Multi-frequency dataset(detail view)

PSNR FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 23.23 16.54 26.93 25.19 21.91 22.76
INGP-Base 22.27 22.82 26.75 24.49 21.83 23.63
INGP-Big 22.65 23.36 27.02 24.90 22.06 24.00
Mip-NeRF360 23.27 24.28 25.98 25.28 21.97 24.16
3D-GS 23.42 24.46 26.11 25.41 22.01 24.29

Ours 24.86 26.24  28.75 26.97 24.64 26.29




Table 12. SSIM on the Multi-frequency dataset(detail view)

SSIM FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 0.726 0.655 0.791 0.882 0.852 0.781
INGP-Base 0.716 0.717 0.769 0.868 0.848 0.784
INGP-Big 0.720 0.722 0.770 0.870 0.849 0.786
Mip-NeRF360 0.686 0.731 0.795 0.884 0.863 0.792
3D-GS 0.735 0.758 0.791 0.893 0.833 0.802
Ours 0.770 0.813 0.817 0.924 0.892 0.843

Table 13. LPIPS on the Multi-frequency dataset(detail view)

LPIPS FlowerShop Home DollsRoom MusicRoom PlantRoom Average
TensoRF 0.459 0.592 0.415 0.316 0.367 0.430
INGP-Base 0.466 0.500 0.404 0.323 0.346 0.408
INGP-Big 0.485 0.449 0.401 0.316 0.337 0.398
Mip-NeRF360 0.421 0.459 0.413 0.292 0.343 0.383
3D-GS 0.422 0.454 0.423 0.306 0.347 0.390
Ours 0.384 0.361 0.367 0.250 0.302 0.332

Table 14. Results on the Tanks&Temples dataset

Dataset Train Truck Average
Method—Metric | PSNRT  SSIM"  LPIPS)o; | PSNRT  SSIMT  LPIPS{; | PSNRT  SSIMT  LPIPS{q,
TensoRF 1873 0.569 0.490 2030 0.657 0411 1952 0.613 0451
INGP-Base 2043 0.684 0.367 2269 0.777 0.269 2156 0.731 0.318
INGP-Big 2039 0711 0.332 2298  0.803 0.227 21.69  0.757 0.280
Mip-NeRF360 19.52  0.660 0.354 2491 0.857 0.159 2222 0.759 0.257
3D-GS 23.06 0813 0.200 25.66  0.849 0.226 2436 0.831 0.213
Ours 23.13  0.802 0.197 2577 0.841 0.210 2445  0.821 0.205

Table 15. Quantitative comparisons

Structrure View(600 x 600)Detail View(4032x 3024)
MethodMem)  PSNRTSSIMT LPIPSY [PSNRTSSIMT LPIPSt

BungeeNeRF 2221 0.524  0.428 19.41 0.401 0.587
BungeeNeRF(adapted) 30.42 0903  0.194 |24.07 0.770  0.379
Mip-NeRF360 30.79 0.906  0.188 24.16 0.792  0.383

Ours 32.44 0929 0.148 |26.29 0.843 0.332




