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1. Evaluate on Additional VFMs
Besides DINOv2 in the main text, we additionally evaluate
VFMs, BEiT2 [11] and iBOT [15]. Both of them are of the
Large size. EVA02-CLIP is utilized as the VLM. As shown
in Tab. 1, they also improve the performance of solely using
VLM.

Table 1. Ablation studies on more VFMs under the G→{C, B,
M} setting. EVA02-CLIP is utilized as the VLM by default.
BEiT2 [11] and iBOT [15] are evaluated as VFMs, respectively.
Both are of Large types.

C B M Avg.

VLM-only 68.26 60.02 70.18 66.15
+ BEiT2-L 69.60 60.19 70.39 66.73
+ iBOT-L 69.37 60.76 70.53 66.89

2. Evaluate on SYNTHIA Benchmarks
We compare the performance of the proposed MFuser
with existing state-of-the-art DGSS methods under the
Synthia→{C, B, M} (as shown in Tab. 2), G→Synthia and
C→Synthia (as shown in Tab. 3) settings. MFuser achieves
the best performance on all settings.

3. Evaluate on ACDC Benchmarks
We compare the performance of the proposed MFuser with
existing state-of-the-art DGSS methods under the clear-to-
adverse-weather setting. Models are trained on Cityscapes
and tested on ACDC which is composed of four domains,
namely fog, night, rain and snow. As shown in Tab. 4,
we consistently outperform the existing methods by a large
margin. Particularly, we surpass SET on rain by 3.79 mIoU.

Table 2. Performance comparison (mIoU in %) under the
synthetic-to-real setting (S→{C, B, M}). Note that we implement
DINOv2 [6] as the VFM and EVA02-CLIP [3] as the VLM. Our
method is marked in gray . The best and second-best results are
highlighted in bold and underlined, respectively.

Method Backbone synthetic-to-real
S→C S→B S→M Avg.

SAN-SAW [10] RN101 40.87 35.98 37.26 38.04
TLDR [4] RN101 42.60 35.46 37.46 38.51
IBAFormer [12] MiT-B5 50.92 44.66 50.58 48.72
Rein [13] DINOv2-L 48.59 44.42 48.64 47.22
SET [14] DINOv2-L 49.65 45.45 49.45 48.18
MFuser EVA02-L 54.17 46.67 53.22 51.35

Table 3. Performance comparison (mIoU in %) under G→S and
C→S. Note that we implement DINOv2 [6] as the VFM and
EVA02-CLIP [3] as the VLM. Our method is marked in gray .
The best and second-best results are highlighted in bold and
underlined, respectively.

Method Backbone G→Synthia C→Synthia

Rein [13] DINOv2-L 48.86 48.56
SET [14] DINOv2-L 50.01 49.61
tqdm [7] EVA02-L 53.32 50.62
MFuser EVA02-L 54.04 54.13

Table 4. Performance comparison (mIoU in %) on
Cityscapes→ACDC. Note that we implement DINOv2 [6]
as the VFM and EVA02-CLIP [3] as the VLM. Our method is
marked in gray . The best and second-best results are highlighted
in bold and underlined, respectively.

Method Backbone clear-to-adverse-weather
→Fog →Night →Rain →Snow Avg.

IBN [8] RN50 63.80 21.20 50.40 49.60 46.25
IW [9] RN50 62.40 21.80 52.40 47.60 46.05
ISW [2] RN50 64.30 24.30 56.00 49.80 48.60
ISSA [5] MiT-B5 67.50 33.20 55.90 53.20 52.45
CMFormer [1] Swin-L 77.80 33.70 67.60 64.30 60.85
Rein [13] DINOv2-L 79.48 55.92 72.45 70.57 69.61
SET [14] DINOv2-L 80.06 57.29 74.80 73.69 71.46
tqdm [7] EVA02-L 81.28 54.80 72.92 72.41 70.35
MFuser EVA02-L 82.33 57.94 78.59 74.93 73.45

4. Ablation on the Number of MVFusers
We evaluate the effect of the number of MVFusers utilized
for feature fusion. To do so, MVFuser is inserted after every
N blocks. As shown in Tab. 5, more MVFusers generally
improve performance.

Table 5. Ablation studies on the number of MVFusers under the
G→{C, B, M} setting. Note that we implement DINOv2 [6] as
the VFM and EVA02-CLIP [3] as the VLM.

N C B M Avg.

8 69.20 61.85 69.24 66.76
4 68.02 61.69 69.96 66.56
2 70.49 62.71 70.78 67.99
1 70.19 63.13 71.28 68.20

5. More Qualitative Results
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Figure 1. Qualitative results on unseen target domains under the G→M setting. MFuser is compared with Rein [13] and tqdm [7].
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Figure 2. Qualitative results on unseen target domains under the G→B setting. MFuser is compared with Rein [13] and tqdm [7].
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