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7. Architecture of latent adapter

Here, we provide detailed network architecture for latent
adapters. We devise a novel latent adapter to transform
different levels’ multi-modal features into latent represen-
tations with its internal structure presented in Figure 4.

8. Implementation details

Pre-training. For the image-text encoder, we adopt the
pre-trained ViT-g from [18] as preliminary visual embed-
dings extractor (F7) and its hidden dimension (d,) is set to
1408. We adopt a base-size Transformer encoder with 12
layers initialized from [4] and its hidden dimension (dg, d;)
is set to 768. The length of learnable embeddings was
set to 32 (L,). For tokenizing medical reports special-
ized medicine vocabulary dictionary from [4] was employed
with vocabulary size of 30522. All text inputs were con-
fined to a maximum length of 95 (L;). All images size was
resized into 3 x 224 x 224 (C x H x W) and normalized
into range (0, 1). Raw images were split into non-overlap
patches by stride of 14 x 14 (h X w) so that patch embed-
dings length was 1616 = 256 (L,,). The feature dimension
of ITC linear heads was set to 256. For the text generator,
we set the dimension of the prediction head to 768. For the
image encoder, the size of latent feature maps were set to
be 8 x 8,16 x 16 for top level and bottom level, respec-
tively. For optimization, we adopt the AdamW optimizer
[43] with 81 = 0.9, B2 = 0.95, and a weight decay of 0.05.
We used a cosine learning rate decay with a peak learning
rate of le-4. We used the warm-up strategy during the first
5% of the total number of steps and an initial learning rate
of le-5. The pre-training process was running on four 80G
NVIDIA A100 GPUs. We used the mix precision wuth Ac-
celerate open-source library [21] to speed up training and
save computational costs.

Details of downstream tasks. For uni-modal down-
stream tasks, we used the AdamW optimizer [43] with the
learning rate set to 3e-6 and 3e-4 for the pre-trained model
and task-specific layers, respectively. We conducted bi-
nary classification and multi-class classification for differ-
ent datasets. For image-text retrieval tasks, we computed
pairwise similarity to rank paired data by relevance. For
zero-shot categorization we used images as queries and gen-
erated expert text prompts as in [26]. The text prompt with
the highest score would be considered a predictive positive
sample. We used images as the prompt for the medical re-

port generation task to guide text generation. We trained
two auto-regressive models in image generation, e.g. Pix-
elsnail [8], to model multi-modal priors. Then we sampled
latent encodings and fed them into a hierarchical decoder to
generate new images.

9. Datasets

MIMIC-CXR[30] This is the largest radiology dataset
currently available, comprising chest X-ray images and cor-
responding reports from Beth Israel Deaconess Medical
Center. It contains over 370,000 images from more than
65,000 patients, making it one of the most extensive collec-
tions of de-identified chest X-rays available for research.
Each image is accompanied by detailed textual reports,
which provide diagnostic information and contextual clin-
ical notes. For the use of this dataset, We exclude samples
that lack a “findings” or “impression” section within their
clinical reports and retain only images in the frontal view.
For dataset splitting, we utilize the official train-test splits
provided by MIMIC-CXR. For downstream tasks, follow-
ing the approach in [11], we sample the MIMIC 5x200
subset and remove it from the training set to ensure robust
evaluation.

CheXpert 5x200 The original CheXpert dataset’s chest
radiographs [28] are multi-labeled to accommodate numer-
ous medical observations occurring at the same time. Be-
cause our zero-shot classification relies on identifying the
most comparable target, having numerous alternative labels
for a target can lead to results that are inconsistent across
categories. As a result, following setting in [26, 69], we
employ CheXpert’s partial data to construct the CheXpert
5x200 dataset, which has 200 solely positive images for
each of the CheXpert competition tasks: atelectasis, car-
diomegaly, pneumonia, edema, and pleural effusion. In this
dataset, each image has positive labels for only one condi-
tion.

RSNA Pneumonia[53] The RSNA Pneumonia Detection
Challenge dataset, developed by the Radiological Society
of North America (RSNA), is a large, annotated collection
of chest X-ray images specifically labelled for pneumonia
detection. We use the stage 2 version. This dataset contains
30k frontal view chest radiographs labeled either as “nor-
mal” or "Pneumonia”. We sample raw 500 positives and
500 negatives for zero-shot classification. For fine-tuning,
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Figure 4. The detailed model structure of latent adapters. The learned embeddings are fed into top adapter as input while text representation
concatenated with local preliminary visual embeddings are put into bottom adapters.
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Figure 5. The additional comparison between real radiographs and reconstructed ones.

the train/valid/test split each constitutes 70%/15%/15% of
the dataset, following [11].

COVIDx [59] It includes more than 30,000 CXR pictures
from a global group of more than 16,600 patients. 16, 490
positive COVID-19 pictures from more than 2,800 patients
are included in this collection. We make use of version 6
of this dataset. The task is to categorize each radiograph
into three groups: normal, non-COVID pneumonia, and
COVID-19. The data split follows [58].

SIIM-ACR Pneumothorax[66] The SIIM-ACR Pneu-
mothorax Segmentation Challenge is a collaborative
machine-learning competition organized by the Society for
Imaging Informatics in Medicine (SIIM) and the American
College of Radiology (ACR). SIIM-ACR Pneumothorax
contains 12954 X-ray chest images, together with image-

level pneumothorax annotation and pixel-level segmenta-
tion mask if pneumothorax exists. We use them for down-
stream supervised classification as in [11].

10. Additional visual reconstruction

We randomly select several reconstructed visual contents
and compare them with real images (see Figure 5), which
shows that our framework could capture visual details.

11. Detailed ablation study

We further conducted comprehensive ablation studies to
evaluate the performance on in-/out-of-distribution datasets
and various downstream tasks in Table 7. Results highlight
the effectiveness of the TIG module for enhancing cross-
modal alignment. Additionally, the various loss weights
were determined through empirical testing, as illustrated in
Table 7 ID 5, 6, 7. We examined the impact of varying the



Learning objectives ‘ Zero-shot cls ‘ Fine-tuned cls

MIMIC 5x200 | RSNA  SIIM  COVIDx
ITC ITM ITG TIG (ACC) (AUC) (AUC)  (ACO)
1 v 41.4 87.0 89.4 90.8
2 v v 443 87.1 89.8 91.5
3 v v v 44.8 88.1 92.3 92.8
4 v v v 46.2 89.1 2.6 91.3
58 | v v v v 50.4 91.7 94.8 93.5
6% | v v v v 49.7 87.5 92.0 92.5
7# | v v v v 49.1 90.8 93.6 92.0

Table 7. Ablation studies of proposed components. $, & and # represent the weight of TIG loss set to 1.0, 0.8, 1.2, respectively.
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Figure 6. Visualization of generated images. Top: real radio-
graphs. Middle: reconstructed images corresponding to the real
samples. Bottom: generated radiographs through trained Pixel-
snail models and VAE decoder.

TIG loss weight while maintaining the other losses’ weights
constant.
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