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The supplementary material contains: 1) the dataset de-
tails of MC-Bench; 2) baseline choices and experimental
details; 3) the human evaluation of motion control; 4) ro-
bustness of motion mask; 5) the application of camera con-
trol; 6) runtime comparison; 7) ablation on control signals.

1. Dataset Details of MC-Bench

The proposed MC-Bench consists of 412 high-quality refer-
ence images and corresponding 1.1 K user-annotated trajec-
tories. We collect the reference images with different visual
contents, including animal, human, vehicle, etc. There are
72 images sampled from the public DragBench [5] and we
further extend it with 340 additional images. Specifically,
all the self-collected images about human are automatically
generated by DALL-E3 [2] to avoid the potential legal con-
cerns. The remaining self-collected images are real photos
which are first crawled on the Pexels platform and then fil-
tered according to the visual quality. For each reference im-
age, the annotator is required to brush the motion region and
draw the movement trajectory according to user intention
(i.e., fine-grained local part moving or global object mov-
ing). During trajectory annotation, all annotators are en-
couraged to ensure the trajectory diversity, including some
complicated trajectories. Finally, the benchmark is anno-
tated with 460 image-trajectory pairs for fine-grained mo-
tion control evaluation, and 680 image-trajectory pairs for
object-level motion control evaluation, respectively. Fig-
ure 3 and Figure 4 further illustrate several visual examples
(reference image, trajectory and motion mask) from MC-
Bench for the two evaluations.

2. Baseline Choices and Experimental Details

For the evaluation on WebVid-10M [1] of fine-grained mo-
tion control, we adopt the commonly-used protocol in re-
cent controllable image-to-video (I2V) advance [3]. Specif-
ically, for each video, we sample the optical flow at the ratio
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of 15% as the sparse trajectories, which are combined with
the first frame as the input condition. Under this experimen-
tal setting, we choose DragNUWA [7] and MOFA-Video [3]
as baselines for comparison. Notably, DragAnything [6] is
deliberately designed for object-level motion control, which
only accepts a single trajectory of object, making it inappli-
cable for fine-grained motion control. Therefore, DragAny-
thing is not involved for comparison in this setting.

For the fine-grained motion control on MC-Bench,
we compare our MotionPro with DragDiffusion [5] and
MOFA-Video. DragNUWA is not included in this compari-
son since it only relies on trajectories and lacks the input of
motion regions. Thus, DragNUWA usually suffers from the
misinterpretation of object and camera movement, making
the comparison unfair. The baseline of DragDiffusion is a
recent trajectory-guided image editing advance, which also
offers convincing results for comparison. To adapt DragDif-
fusion for video generation, we divide the input trajectories
into 15 segments and independently feed each segment into
DragDiffusion to generate target frame. All the synthesized
frames are concatenated as the final video.

In the evaluation of object-level motion control on MC-
Bench, both MOFA-Video and DragAnything are employed
as baselines for performance comparison. To facilitate Dra-
gAnything in disentangling object and camera moving, we
add static points in regions outside the motion mask areas
to help DragAnything generate object-level motion instead
of camera moving for evaluation. It’s worth to noting that
MotionPro learns object and camera motion control on “in-
the-wild” video data (e.g., WebVid-10M) without applying
special data filtering.

3. Human Evaluation

In addition to the evaluation over automatic metrics, we also
conduct human evaluation to investigate user preferences
from three perspectives (i.e., motion quality, temporal co-
herence and trajectory alignment) across different control-
lable 12V approaches. In particular, we randomly sample



Table 1. Human evaluation of user preference ratios (%) over both fine-grained and object-level motion control on MC-Bench.

Evaluation Items

Fine-grained Motion Control

Object-level Motion Control

DragDiffusion [5] MOFA-Video [3] MotionPro ‘ MOFA-Video [3] DragAnything [6] MotionPro
Motion Quality (1) 3.12 21.88 75.00 12.50 18.75 68.75
Temporal Coherence (1) 6.25 40.63 53.12 25.00 15.63 59.37
Trajectory Alignment (1) 9.37 18.75 71.88 15.62 21.88 62.50
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Figure 1. An illustration of 12V camera control using the condition of camera pose sequence in our MotionPro.

200 generated videos from both fine-grained and object-
level motion control for evaluation. Through the Amazon
MTurk platform, we invite 32 evaluators, and ask each eval-
uator to choose the best one from the generated videos by
all models given the same inputs.

Table 1 shows the user preference ratios across different
models on MC-Bench. Overall, our MotionPro clearly out-
performs all baselines in terms of the three criteria on both
fine-grained and object-level motion control. The results
demonstrate the advantage of leveraging complementary
region-wise trajectory and motion mask to benefit video
synthesis with natural motion, desirable temporal coherence
and precise motion-trajectory alignment.

4. Ablation on control signals.

We also include two runs (MotionPro,,.,.: replaces region-

wise trajectory with random trajectory, MotionPro_ . :
disables motion mask with all-one masks). Their FVD (73.7
and 66.2) on WebVid-10M are inferior to our MotionPro
(59.88), which validates the effectiveness of our two con-
trol signal designs for precise motion formulation.

5. Robustness of motion mask

To be clear, motion mask in our MotionPro refers to
the rough dynamic region and does not require precisely-
aligned shape at inference. We show 12V results controlled
by the same trajectory with various motion masks in Figure
2, which show strong robustness. Such generalization merit
is attributed to the use of estimated motion mask (flow map

estimated by DOT) at training, rather than ground-truth pre-
cise motion mask.

6. Application: Camera Control

Our learnt MotionPro naturally supports two applications of
camera control without additional training. The first appli-
cation is controlling object and camera motion simultane-
ously with multiple trajectories in I2V generation. Another
application is the 12V camera control by exploiting the se-
quence of camera poses as input condition. To be clear,
motion mask in our MotionPro refers to the rough dynamic
region and does not require precisely-aligned shape at infer-
ence.

Simultaneous object and camera motion control. In
this setting, we simply set the input motion mask as all-ones
matrix, and feed multiple trajectories that reflect the object
and background moving into MotionPro for I2V generation.
The video cases are provided in the offline project page.

Camera control with camera poses. Figure | illustrates
the process of camera control using the condition of camera
pose sequence in MotionPro. Concurrently, given an input
image and the camera pose sequence, we first estimate the
metric depth map of the image using ZoeDepth [4]. Next,
we lift the 2D pixels to 3D point cloud using the metric
depth map. Through projecting the point cloud into 2D
space given the camera pose, we can determine the cor-
responding 2D positions of the same 3D points under the
new view. By calculating the 2D displacement of the pixels
projected from the same 3D points in the original and new
views, the camera pose sequence is then converted into the



sparse trajectories. Finally, we feed the sparse trajectories
and all-ones motion mask into MotionPro for I2V synthesis.
The video cases are provided in the offline project page.

7. Runtime Comparison

For 16-frame video generation (resolution: 512 x 320, on
single NVIDIA H100 GPU), the runtime of MotionPro is
17 sec, which is comparable to baselines (DragNUWA:
27, DragDiffusion: 320, MOFA-Video: 15, DragAnything:
32).
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Figure 2. 12V with various mask shapes (GIF Videos). Please view in Adobe Reader.

Figure 3. Visual examples from MC-Bench for fine-grained motion control evaluation. Each reference image is annotated with trajectory
and motion mask for image-to-video generation.



Figure 4. Visual examples from MC-Bench for object-level motion control evaluation. Each reference image is annotated with trajectory
and motion mask for image-to-video generation.
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