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Figure 1. The cosine similarity between 10 instruction tokens used
in Deformable-DETR++ [12].

A. Analysis of Instructive Self-Attention

We present the PyTorch-style pseudo-code for our proposed
instructive self-attention method in Alg. 1. As detailed in
our primary manuscript, our multi-route training approach
involves three training routes. Route-2 serves as the pri-
mary route designated for one-to-one prediction, which is
the same as the baseline model. Route-1 acts as an auxiliary
route with an independent FFN aimed at one-to-many pre-
dictions. Meanwhile, Route-3 operates as an auxiliary route
incorporating our novel instructive self-attention to facilitate
one-to-many predictions. In this approach, we establish a col-
lection of trainable tokens as instructions to direct the object
queries and subsequent modules in executing one-to-many
prediction. These trainable instruction tokens are affixed
to the input object queries through concatenation, allowing
for the dynamic and adaptable transmission of instructions
via self-attention mechanisms. The resulting output from
the instruction tokens after undergoing self-attention is not
retained, as these tokens do not possess the capability to
locate objects.

†Corresponding author.
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(a) Evaluation results of box
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(b) Evaluation results of mask

Figure 2. Evaluation results of each epoch. We utilize the
Deformable-DETR++ (300 queries) as the baseline model, which
is trained for 12 and 24 epochs, respectively.

In the main paper, we ablate the configurations of the
proposed instructive self-attention, including the number of
instruction tokens and layers using instruction tokens. Abla-
tion studies demonstrate that the model is not sensitive to the
layers and numbers of instruction tokens, due to the follow-
ing reasons: (i) Regarding the impact of layers of instruction

1



Algorithm 1 Pseudo-code of Instructive Self-Attention in a PyTorch-like style.

class InstructAttn(nn.Module):
def __init__(self, embed_dim, num_heads, num_ins):

# embed_dim: the embedding dimension used
# num_heads: the number of heads in self-attention
# num_ins: the number of instruction tokens
self.ins_sa = nn.MultiheadAttention(

embed_dim = embed_dim,
num_heads = num_heads,

)

# define learnable instruction tokens
self.instruct_o2m = nn.Embedding(num_ins, embed_dim)
self.pos_o2m = nn.Embedding(num_ins, embed_dim)
self.num_ins = num_ins

def forward(self, query, key, value, query_pos, key_pos, route="route-3"):
# route: identify the current route
query = query + query_pos
key = key + key_pos
if route == "route-3":

ins_token = self.instruct_o2m.weight
ins_pos = self.pos_o2m.weight

# concatenate instruction tokens into the input sequence
query = torch.cat([query, ins_token + ins_pos], dim=1)
key = torch.cat([key, ins_token + ins_pos], dim=1)
value = torch.cat([value, ins_token], dim=1)

# perform self-attention
out = self.ins_sa(

query, key, value
)
if route == "route-3":

# discard the corresponding output of instruction tokens
out = out[:, :-self.num_ins, :]

return out
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Figure 3. Influence of hyper-parameters K, α and τ in the one-to-many assignment. (a) Influence of K for selecting top-K positive
candidates. (b) Influence of α that denotes the weight of classification confidence when forming the matching score M . (c) Influence of τ
that is used to filter out low-quality candidates.

tokens, we hypothesize that the information from instruc-
tion tokens in the first layer can be retained and utilized by
subsequent layers. Meanwhile, residual connections across
transformer decoder layers may help preserve the instruction
information for later layers. (ii) To study the impact of the
number of instruction tokens, as shown in Fig. 1, we calcu-
late the cosine similarity between the 10 instruction tokens
and find that most of them are very similar. This indicates

that most instruction tokens may play a similar role, making
the model insensitive to their number.

B. Convergence Curves

Employing Deformable-DETR++ [12] with 300 queries, we
perform training on the instance segmentation task both
with and without the integration of our proposed approach.
Consistent with established methods [4, 5, 10–12], models



Route Epoch NMS
Box Mask

mAP AP50 AP75 APs APm APl mAP AP50 AP75 APs APm APl

Baseline 12 46.5 64.2 50.8 28.8 50.0 60.7 32.4 55.7 32.6 11.9 35.6 54.4
Baseline 12 ✔ 46.7 65.0 50.7 29.0 50.1 60.9 32.5 56.3 32.6 12.0 35.8 54.8

Route-2 (primary) 12 49.5 66.6 54.1 30.3 52.6 64.7 36.0 59.8 37.2 13.6 39.6 59.7
Route-2 (primary) 12 ✔ 49.7 67.6 54.1 30.4 52.8 65.0 36.2 60.5 37.2 13.7 39.8 60.1
Route-1 (auxiliary) 12 14.5 18.8 16.0 15.6 21.6 19.1 10.9 17.1 11.6 5.9 13.4 20.2
Route-1 (auxiliary) 12 ✔ 49.8 67.3 54.6 31.0 53.0 65.3 36.1 60.1 37.2 13.9 39.4 59.9
Route-3 (auxiliary) 12 14.5 18.7 15.9 15.3 22.1 19.7 10.8 17.0 11.5 5.6 13.6 20.3
Route-3 (auxiliary) 12 ✔ 49.9 67.3 54.6 30.8 53.2 65.4 36.2 60.2 37.3 13.6 39.5 59.8

Baseline 24 48.6 66.4 53.1 30.8 51.9 62.9 35.1 59.1 36.0 14.3 38.9 57.5
Baseline 24 ✔ 48.6 67.1 52.8 30.9 51.8 63.0 35.2 59.6 35.9 14.4 39.0 57.7

Route-2 (primary) 24 50.3 68.0 54.7 31.5 53.2 65.0 37.6 61.4 38.9 15.1 41.4 60.5
Route-2 (primary) 24 ✔ 50.4 68.7 54.6 31.6 53.3 65.2 37.7 61.9 38.9 15.1 41.6 60.9
Route-1 (auxiliary) 24 14.0 18.1 15.2 15.4 21.1 18.4 10.7 16.6 11.3 5.8 13.4 19.1
Route-1 (auxiliary) 24 ✔ 50.4 68.2 55.1 31.5 53.5 65.2 37.6 61.7 38.8 14.9 41.2 60.4
Route-3 (auxiliary) 24 14.1 18.3 15.3 15.6 21.2 18.8 10.7 16.7 11.3 5.9 13.3 19.3
Route-3 (auxiliary) 24 ✔ 50.4 68.2 54.8 31.7 53.4 65.2 37.6 61.6 38.8 14.9 41.2 60.5

Table 1. The detailed performance of each route in Mr. DETR. The Deformable-DETR++ [12] employing 300 queries serves as our
baseline model. ‘Route-2’: the primary route employed for one-to-one prediction, identical in functionality to the baseline model. ‘Route-1’:
the auxiliary route for one-to-many prediction, which is built with an independent FFN. ‘Route-3’: the auxiliary route for one-to-many
prediction, which utilizes our proposed instructive self-attention.

are trained using 12 and 24 epoch schedules, respectively.
The learning rate is reduced by a factor of 0.1 at the 11th
and 20th epochs according to the 12 and 24 epoch schedules,
respectively. We illustrate the evaluation results for bounding
box predictions in Fig. 2(a) and for instance mask predictions
in Fig. 2(b). The evaluation results demonstrate that our
approach significantly enhances the training process of the
baseline model.

C. Impact of Hyper-Parameters
Fig. 3 shows the influence of the hyper-parameters K, α, and
τ in the one-to-many assignment [4, 8, 11]. In Fig. 3a, we ob-
serve that as the number of positive candidates increases, the
model achieves its highest performance when K = 6. How-
ever, when K > 7, the one-to-many assignment increases
the difficulty of removing duplicates in the primary route,
leading to decreased performance. For the weight of classifi-
cation confidence α, as shown in Fig. 3b, the model achieves
the best performance at α = 0.3. Similarly, in Fig. 3c, the
performance improves as the filter threshold τ increases,
reaching its peak at τ = 0.4. Beyond this value, the perfor-
mance declines, potentially due to the filtering out of many
high-quality candidates. In our method, we empirically set
K = 6, α = 0.3, and τ = 0.4.

D. Detailed Performance of Each Route
As detailed in Sec. B, we train the Mr. DETR for the instance
segmentation task based on Deformable-DETR++ [12]. We
report the evaluation results of each route of our method

in Tab. 1. Experimental results indicate that the primary
route is adept at accomplishing one-to-one prediction, as ev-
idenced by the fact that Non-Maximum-Suppression (NMS)
yields only a minor improvement of approximately 0.1 -
0.2% in both box mAP and mask mAP. Conversely, for the
auxiliary routes, the application of NMS significantly im-
proves the performance (about 35% and 25% in terms of
box mAP and mask mAP) of Route-1 and Route-3, high-
lighting their capability for effective one-to-many prediction.
This further substantiates that our introduced instructive self-
attention is proficient in efficiently guiding object queries
for one-to-many prediction.

E. Experiments on the Objects365
Objects365 [9] is a large-scale dataset with 365 classes,
which contains about 2,000,000 images. To further ver-
ify the scalability of our method on the large-scale dataset,
we conduct experiments on Objects365 using Deformable-
DETR++ [12] model with 900 queries. To save training time,
we train the baseline model and our method for 4 epochs
only. The initial learning rate is set to 2e-4 and decays at the
third epoch. Other training settings are the same as the model
trained on the COCO dataset [6]. We report the performance
comparison in Tab. 2.

F. Training Cost
We measure the training time of different methods in Tab. 3.
The training time denotes the average duration of each epoch.
We evaluate training time on 8 NVIDIA 3090 GPUs with



Models Epochs Queries mAP AP50 AP75 APs APm APl

Deformable-DETR++ [12] 4 900 30.4 40.8 33.1 16.1 30.1 39.1
w/ Mr. DETR 4 900 32.7 (+2.3) 42.7 (+1.9) 35.8 (+2.7) 17.1 (+1.0) 32.3 (+2.2) 42.6 (+3.5)

Table 2. Experiments on the large-scale Obejcts365 dataset [9]. Deformable-DETR++ and our model use the ResNet-50 [3] backbone.

a batch size of 16. The experimental results indicate that
our proposed method achieves an effective trade-off between
performance and training costs.

Model Time GFLOPs mAP

Deformable-DETR++ [12] 84 234.9 47.0
H-DETR [5] 104 (+20) 265.0 48.7 (+1.7)
DAC-DETR [4] 94 (+10) - -
MS-DETR [11] 96 (+12) - 48.8 (+1.8)
Group-DETR [2] 123 (+39) - -
Mr. DETR (Ours) 101 (+17) 258.0 49.5 (+2.5)

Table 3. Comparison of training time (minutes) and training
GFLOPs of various methods. All methods utilize Deformable-
DETR++ with 300 queries as the baseline. The training time repre-
sents the average duration per training epoch.

G. Performance of Intermediate Layers
Typically, DETR-like object detectors consist of six layers
each in their transformer encoders and decoders. As men-
tioned in Sec. B and Sec. D, our approach for mask predic-
tion is based on Deformable-DETR++ [12], utilizing solely
the last decoder layer. All six decoder layers are employed
for object detection tasks. Therefore, we only evaluate the
box prediction for all layers as shown in Tab. 4. Evaluation
results suggest that our method can effectively improve the
performance of the primary route across all six decoder lay-
ers, demonstrating the efficacy of our approach. Moreover,
the one-to-many prediction training routes, namely, Route-1
and Route-3, significantly surpass the primary route in the
shallower layers. For example, with a model trained on a
12-epoch schedule, Route-3 achieves a 6.4% improvement
over the primary route in layer 0, and a 0.4% improvement
in layer 5. These experiments indicate that the primary route
needs more decoder layers to reach comparable performance
as the auxiliary routes equipped with NMS. For instance,
Route-1 and Route-3 can reach 49.4% mAP in layer 2, while
the primary route achieves 49.4% mAP in layer 4.

H. Qualitative Results
We present the prediction results of our method in Fig. 4.
The model is based on the DINO [10] with IA-BCE loss [1]
as the baseline using Swin-L [7] backbone.
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Method Layer Route Epoch NMS mAP AP50 AP75 APs APm APl

Baseline [12] 0 - 12 38.5 53.4 42.2 23.1 41.8 50.0
w/ Mr.DETR 0 Route-2 41.0 (+2.5) 55.5 45.0 24.8 43.8 54.3
w/ Mr.DETR 0 Route-1 ✔ 47.5 64.9 52.2 29.0 51.0 62.1
w/ Mr.DETR 0 Route-3 ✔ 47.4 64.9 52.3 29.1 50.9 62.4

Baseline [12] 1 - 12 42.6 58.7 46.5 25.7 46.2 55.1
w/ Mr.DETR 1 Route-2 45.8 (+3.2) 61.8 50.3 27.6 49.0 60.3
w/ Mr.DETR 1 Route-1 ✔ 48.9 66.1 53.5 30.4 52.4 63.8
w/ Mr.DETR 1 Route-3 ✔ 49.0 66.3 53.6 30.4 52.6 64.2

Baseline [12] 2 - 12 45.0 62.0 49.2 27.7 48.7 58.6
w/ Mr.DETR 2 Route-2 48.0 (+3.0) 64.7 52.5 29.3 51.3 62.4
w/ Mr.DETR 2 Route-1 ✔ 49.4 66.7 54.2 31.1 52.8 64.3
w/ Mr.DETR 2 Route-3 ✔ 49.4 66.5 54.1 31.0 52.8 64.3

Baseline [12] 3 - 12 46.1 63.5 50.4 28.6 49.6 60.1
w/ Mr.DETR 3 Route-2 49.0 (+2.9) 66.0 53.5 30.4 52.3 63.7
w/ Mr.DETR 3 Route-1 ✔ 49.7 67.1 54.5 31.3 53.0 64.8
w/ Mr.DETR 3 Route-3 ✔ 49.9 67.2 54.6 31.4 53.3 64.8

Baseline [12] 4 - 12 46.4 64.1 50.7 29.0 50.0 60.7
w/ Mr.DETR 4 Route-2 49.4 (+3.0) 66.5 54.0 30.4 52.6 64.3
w/ Mr.DETR 4 Route-1 ✔ 49.9 67.4 54.7 31.1 53.2 65.3
w/ Mr.DETR 4 Route-3 ✔ 50.0 67.5 54.7 31.3 53.3 65.7

Baseline [12] 5 - 12 46.5 64.2 50.8 28.8 50.0 60.7
w/ Mr.DETR 5 Route-2 49.5 (+3.0) 66.6 54.1 30.3 52.6 64.7
w/ Mr.DETR 5 Route-1 ✔ 49.8 67.3 54.6 31.0 53.0 65.3
w/ Mr.DETR 5 Route-3 ✔ 49.9 67.3 54.6 30.8 53.2 65.4

Baseline [12] 0 - 24 41.3 56.3 45.4 25.5 44.6 53.2
w/ Mr.DETR 0 Route-2 42.6 (+1.3) 57.3 46.4 25.8 44.8 55.9
w/ Mr.DETR 0 Route-1 ✔ 48.2 65.8 52.7 29.1 51.4 62.5
w/ Mr.DETR 0 Route-3 ✔ 48.2 66.0 52.8 29.2 51.6 62.2

Baseline [12] 1 - 24 45.1 61.5 49.5 28.2 48.3 58.1
w/ Mr.DETR 1 Route-2 47.1 (+2.0) 63.3 51.3 28.4 49.9 61.2
w/ Mr.DETR 1 Route-1 ✔ 49.6 67.1 54.2 30.5 52.9 63.9
w/ Mr.DETR 1 Route-3 ✔ 49.7 67.3 54.2 30.6 53.0 64.1

Baseline [12] 2 - 24 47.2 64.3 51.8 29.8 50.3 60.8
w/ Mr.DETR 2 Route-2 49.2 (+2.0) 66.2 53.6 30.2 52.2 63.4
w/ Mr.DETR 2 Route-1 ✔ 50.1 67.7 54.8 31.1 53.3 64.8
w/ Mr.DETR 2 Route-3 ✔ 50.2 67.9 54.7 31.4 53.5 64.7

Baseline [12] 3 - 24 48.1 65.7 52.7 30.8 51.3 61.8
w/ Mr.DETR 3 Route-2 50.0 (+1.9) 67.4 54.4 30.9 53.0 64.5
w/ Mr.DETR 3 Route-1 ✔ 50.2 68.0 54.8 31.7 53.4 64.8
w/ Mr.DETR 3 Route-3 ✔ 50.3 68.1 54.8 31.5 53.4 65.0

Baseline [12] 4 - 24 48.6 66.3 53.1 30.9 51.8 62.3
w/ Mr.DETR 4 Route-2 50.3 (+1.7) 67.9 54.7 31.3 53.2 65.0
w/ Mr.DETR 4 Route-1 ✔ 50.5 68.3 55.1 31.7 53.7 65.1
w/ Mr.DETR 4 Route-3 ✔ 50.4 68.3 54.9 32.0 53.5 65.3

Baseline [12] 5 - 24 48.6 66.4 53.1 30.8 51.9 62.9
w/ Mr.DETR 5 Route-2 50.3 (+1.7) 68.0 54.7 31.5 53.2 65.0
w/ Mr.DETR 5 Route-1 ✔ 50.4 68.2 55.1 31.5 53.5 65.2
w/ Mr.DETR 5 Route-3 ✔ 50.4 68.2 54.8 31.7 53.4 65.2

Table 4. Evaluation results of box prediction in all six decoder layers. ‘Route-2’: the primary route for one-to-one prediction. ‘Route-1’:
the auxiliary route with an independent FFN. ‘Route-3’: the auxiliary route with an instructive self-attention.



Figure 4. Qualitative results of our method. Left: prediction results. Right: ground truth.
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