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1. Implementation Details
1.1. Datasets

The details of the three datasets used in our experiments are
listed as follows, including THuman2.0, THuman3.0, and
CustomHumans:
• THuman2.0 [9]: Thuman2.0 is a dataset with 525 high-

resolution 3D human scans wearing over 150 different
types of clothing. We use this dataset as our training data.

• THuman3.0 [6]: THuman3.0 is a dataset that contains
over 20 combinations of human garments, each contain-
ing 15 to 35 high-quality human scans. In this paper, we
select 60 scans for all of our experiments and ablation
studies. In Table 1, we specifically display the test sam-
ple number we have selected.

• CustomHumans [1]: CustomHumans is a dataset with
600 high-quality human scans of 80 subjects in over
100 garments and poses. Following the previous work
SiTH [2], we selected 60 subjects for all of the experi-
ments and ablation studies.

1.2. Experimental Setting

Training. All experiments are conducted using four
NVIDIA A800 GPUs. Our multimodal UNet is initialized
with the pre-trained model from the work [7]. We set the in-
put size of the single-view RGB images to 512x512 pixels
and the Fourier expansion order (q) to 8. During training,
we render human scans online using the official nvdiffrast
library. We randomly sample 8 views to generate 8 RGB
images, which are used to constrain the proposed Gaussian,
and we then select one of these images as the input view,
whose camera elevation and azimuth are set to 0,0. Note
that we sample the front views at random elevation and az-
imuth. We only set/assume these degrees of the front view
all to zero, to normalize other views. The learning rate for
the AdamW [4] optimizer is set to 5×10−5. In training, we
use the officially released fitting SMPL-X parameters [9] as
input and the default disturbance value (α) is set to 0.25.
The pre-trained UNet of the wrinkle-level refinement mod-
ule is from the work [8]. Specifically, we freeze the VAE
and CLIP image encoder and only update the UNet. All of
the input images are rendered with nvdiffrast and resized to
512x512 pixels. We randomly selected 8 horizontal camera-
rendered images and top and bottom camera-rendered im-
ages as our initialization inputs and de-noising conditions.
During training, we set the de-noising step k to 1. The learn-
ing rate of AdamW optimizer is set to 1×10−5. All models

are trained to converge.

Inference. In inference, we estimate the SMPL-X param-
eters from the input single-view image. SMPL-X param-
eters are estimated using scripts from SiTH The output of
our models is the 3D Gaussian representation, which is
transformed into the 3D mesh using the official script file
provided by LGM [7]. During the refinement step, the
coarse normal map In in the input images are rendered on-
line with nvdiffrast library while the RGB images Ic are
rendered from the output 3D Gaussian with diff-gaussian-
rasterizer [3]. During remeshing, we set the learning rate
of the vertices optimizer to 0.3 and the laplacian weight to
0.01. We iteratively update the mesh for 100 steps to obtain
the refined mesh.

1.3. CAPE dataset

In this section, we clarify our decision to exclude the CAPE
dataset [5] as our test set. As highlighted in the appendix of
SiTH [2], the CAPE dataset has several significant short-
comings. It features incomplete input images rendered
from unprocessed point clouds, and the ground truth (GT)
meshes are of low resolution, failing to accurately corre-
spond to the input images. Additionally, the dataset suffers
from limited diversity in human outfitting, as the majority
of subjects are depicted in tight clothing such as t-shirts and
shorts. We present some samples from the CAPE dataset
in Figure 2. Given these limitations, we opted for higher-
quality datasets to ensure an unbiased comparison of our
method against the latest advancements in the field. No-
tably, we have identified recently updated datasets, includ-
ing CustomsHumans [1] and THuman3.0 [6], which offer
comprehensive, high-resolution input data and a wider va-
riety of human attire. This choice not only enhances the
validity of our comparisons but also reflects our commit-
ment to using the most robust and diverse data available in
our research.

2. Limitations

The current implementation of our model faces an effi-
ciency bottleneck during the GS-to-mesh conversion pro-
cess at the inference stage. This step is resource-intensive,
taking approximately 3 minutes to complete and requiring
around 50GB of GPU memory. Additionally, while the GS
reconstruction step is relatively fast, completing in under
a second, and the mesh refinement process is also quicker,
taking about 1 minute. Future efforts may include exploring



Figure 1. Samples from the CAPE test set which contain noticeable defects. We present some input images from the CAPE test set
intuitively. From the displayed image, we can see significant issues with the quality of the input image provided by CAPE. Specifically,
there are obvious defects in the characters’ palms, feet, and head areas. Therefore, to reasonably evaluate the comparison with SOTA
methods, we chose the latest and higher quality CustomsHumans and THuman3.0 as our test set.

Figure 2. Samples from the CAPE test set. Comparing with the input images, it can be found that these GT meshes do not fully
correspond to them. For example, in the palms and feet, GT meshes will produce varying degrees of distortion



Figure 3. More examples to illustrate the effectiveness of the proposed WLR module. The first row shows the normal map rendered
from the mesh before the introduction of the WLR module, and the second row shows the normal map rendered by the mesh after the
introduction of the WLR module.

Figure 4. More examples to illustrate the effectiveness of the proposed WLR module. The first row shows the normal map rendered
from the mesh before the introduction of the WLR module, and the second row shows the normal map rendered by the mesh after the
introduction of the WLR module.

alternative algorithms, optimizing existing code, or lever-
aging more advanced hardware capabilities to alleviate this
bottleneck.



Figure 5. More examples to illustrate the effectiveness of the proposed WLR module. The first row shows the normal map rendered
from the mesh before the introduction of the WLR module, and the second row shows the normal map rendered by the mesh after the
introduction of the WLR module.

Figure 6. More examples to illustrate the effectiveness of the proposed SLE module. The first row shows the side rendering of the
reconstructed human before the introduction of the SLE module. The second row shows the side rendering of the reconstructed human
after the introduction of the SLE module. The third row shows the side the rendering of the ground truth.



Scan ID in our Exp. Scan ID in THuman3.0 Subject ID Scan ID in our Exp. Scan ID in THuman3.0 Subject ID

1 00001 0033 1 31 00008 0042 11
2 00001 0069 1 32 00008 0046 11
3 00001 0070 1 33 00008 0032 11
4 00001 0047 2 34 00008 0049 12
5 00001 0049 2 35 00008 0052 12
6 00001 0052 2 36 00008 0057 12
7 00003 0003 3 37 00023 0012 13
8 00003 0013 3 38 00023 0080 13
9 00003 0018 3 39 00023 0008 13

10 00003 0021 4 40 00024 0014 14
11 00003 0035 4 41 00024 0023 14
12 00003 0036 4 42 00024 0025 14
13 00004 0007 5 43 00024 0039 15
14 00004 0014 5 44 00024 0043 15
15 00004 0022 5 45 00024 0052 15
16 00005 0022 6 46 00025 0004 16
17 00005 0023 6 47 00025 0005 16
18 00005 0005 6 48 00025 0006 16
19 00005 0042 7 49 00026 0026 17
20 00005 0045 7 50 00026 0034 17
21 00005 0048 7 51 00026 0039 17
22 00006 0022 8 52 00027 0005 18
23 00006 0006 8 53 00027 0032 18
24 00006 0007 8 54 00027 0027 18
25 00007 0009 9 55 00028 0034 19
26 00007 0021 9 56 00028 0025 19
27 00007 0030 9 57 00028 0020 19
28 00008 0005 10 58 00060 0018 20
29 00008 0013 10 59 00060 0010 20
30 00008 0044 10 60 00060 0028 20

Table 1. Details about the 60 scans from THuman3.0 used in our experiment. We report the Scan ID in our experiment its corresponding
ID in Thuman3.0 and the subject ID.

3. More Experimental Results
3.1. Visualization on Ablation Study

Additional Examples Demonstrating the Effectiveness
of the Proposed WLR Module. Figures 3, 4, and 5 provide
further insights into the impact of the Wrinkle-Level Refine-
ment (WLR) module by comparing results before and after
its implementation. The results clearly illustrate that the
WLR module significantly enhances the geometric quality
of the reconstructed mesh, particularly in capturing intricate
details such as clothing wrinkles and facial features.
Additional Examples Demonstrating the Effectiveness
of the Proposed SLE Module. Figure 6 presents addi-
tional results that highlight the effects of incorporating the
Skeleton-Level Enhancement (SLE) module. The compari-
son reveals the SLE module effectively aids in reconstruct-

ing the target human geometry, resulting in a reconstructed
mesh that closely resembles the ground truth mesh.
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