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Supplementary Material

1. Explicit Coarse Perception Network
1.1. Encoding of Click
We use Disk Map to encode foreground click, background
click and noise-tolerant click, similar to RITM [7], Fo-
calClick [1] and SimpleClick [4]. The encoded 3-channel
tensor is then performed a patch embedding and added to
the result of the patch embedding of the RGB image. This
strategy of cooperating user interaction is proposed in Sim-
pleClick [4].

1.2. Model Structure
The overall structure of Explicit Coarse Perception (ECP)
Network is shown in Fig. A, with the decoder structure il-
lustrated in Fig. B. During decoder, the feature map output
by the last block of the plain ViT is passed through four
groups of convolutions, obtaining four feature maps with
different sizes and dimensions. These feature maps are then
upsampled to the same size and concatenated together, after
which a simple MLP is used to obtain the final result. This
approach of using a simple FPN-like decoder [3] for the ViT
backbone was proposed in ViT-Det [2] and later optimized
in SimpleClick [4].

As depicted, a significant feature of ECP is that it does
not predict masks but instead predicts the FBU map. Con-
sequently, we need to manually prepare the ground truth for
the FBU map, which will be discussed in the next part.

1.3. Training Data Processing
To convert a ground truth mask to a ground truth FBU map
in Fig. A, a simple morphology operation is required. Since
the FBU map is essentially a coarse estimation, its ground
truth is not uniquely defined. If the foreground region cov-
ers the simple parts of the object, the background region
covers large continuous areas, and the uncertain region cov-
ers areas with fine structures, the FBU map can be consid-
ered correct. The three classes of clicks required for train-
ing and evaluation are also sampled from the corresponding
regions of the FBU map. The core code segment for gener-
ating the FBU map during the training stage is as follows:

1 import cv2
2 import numpy as np
3 fg mask = mask
4 bg mask = 1 − mask
5 fg mask = cv2 . e r o d e ( fg mask , k e r n e l ,

i t e r a t i o n s =1)
6 bg mask = cv2 . e r o d e ( bg mask , k e r n e l ,

i t e r a t i o n s =1)
7 fbumap = np . o n e s l i k e ( mask ) * 128

8 fbumap [ fg mask == 1] = 255
9 fbumap [ bg mask == 1] = 0

kernel above is an elliptical structure created using OpenCV,
with the size randomly sampled between 15 and 30.

However, to ensure the reproducibility of evaluation re-
sults, we fix the kernel size and the number of iterations for
the FBU map during evaluation. The core code segment for
generating the FBU map during the evaluation is as follows:

1 import cv2
2 import numpy as np
3
4 d i l a t e d = cv2 . d i l a t e ( mask , k e r n e l ,

i t e r a t i o n s = d i l a t i o n i t e r )
5 e r od e d = cv2 . e r o d e ( mask , k e r n e l ,

i t e r a t i o n s = e r o s i o n i t e r )
6 fbumap = np . f u l l ( mask . shape , 128 , d t y p e =

np . u i n t 8 )
7 fbumap [ e r od e d == 255] = 255
8 fbumap [ d i l a t e d == 0] = 0

kernel and dilation iter are 5 and 3, respectively. We delib-
erately use different codes and operators to generate FBU
maps, demonstrating that our High Resolution Refine Net-
work is capable of predicting stable results based on various
FBU maps.

During training, we also use downsampled images and
ground truth FBU map. This is because: 1) Large image
sizes in the training set lead to slow I/O speed, while down-
sampling significantly improves training speed. 2) ECP is
designed to perform a coarse perception at a relatively low
resolution, so the loss of detail due to downsampling at this
stage does not impact the performance.

2. High Resolution Refine Network
2.1. Model Structure
In the main paper, we discuss the backbone of High
Resolution Refine Network (HRR). Here, we introduce the
structure of HRR’s decoder, as illustrated in Fig. C. 4
groups of convolutions extract low-level features with 4 dif-
ferent sizes from the RGB image. Then the feature map out-
put by the final block of the backbone will be upsampled by
a factor of 2 and then concatenated with the smallest low-
level feature map. A simple convolutional layer is utilized
to fuse backbone feature map and low-level feature map.
This fusion process is repeated 4 times, during which the
size of the feature map continuously increases. Finally, a
group of convolutions is used to predict the final mask.

The grid attention used in HRR’s backbone requires set-
ting a interval of K, which we set to 8 in NTClick. The
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Figure A. Overall stucture of ECP.
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Figure B. Stucture of ECP’s decoer.

choice of K impacts the resolution of the images fed into
the backbone, as grid attention necessitates that the patches

in both the height and width dimensions be divisible by K.
Therefore, the image resolution needs to be padded to a
multiple of patch size ×K. HRR’s patch size is 16, so the
height and width of input image needs to be a multiple of
128 (16× 8).

2.2. Training Details
Training set. HRR was trained on the DIS5K [6] training
set, given that HRR is essentially a refinement network and
DIS5K features the most complex scenes and the highest
annotation quality. Additionally, using less training data re-
duces the training burden.
Data augmentation. We only use Random Crop as the data
augmentation strategy, with a crop size of 2048.
Loss function. HRR is constrained by both the L1 loss and
the Gradient loss [8], two widely used loss functions in the
field of image matting. Gradient loss is utilized to enhance
the learning of edges in this task.

2.3. Inference
During the inference stage, HRR does not resize the im-
age but instead pads it to the nearest multiple of 128 before
feeding it into the backbone. This approach avoids the detail
loss of RGB image due to downsampling. Essentially, HRR
performs inference at a dynamic resolution. For example,
an image of 1000 × 800 would be padded to 1024 × 896,
and an image of 4000 × 3000 pixels would be padded to
4096× 3072. Notably, for images with a long side exceed-
ing 4096, we downsample them to a long side of 4096 while
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Figure C. Structure of HRR.

maintaining the aspect ratio. This is because we found that
images with a resolution greater than 4096 do not typically
contain details that require such high resolution to capture,
and such details are not reflected in the annotations. There-
fore, performing inference at resolutions higher than 4096
offers little benefit and instead adds unnecessary computa-
tional overhead.

3. Visualization

We provide more visualizations about interactions, FBU
map and predictions in Fig. D,E,F.

4. Ablation Study

4.1. Impact of grid attention interval

Beyond the default interval of 8, we initially selected two
additional values, 4 and 16, and retrained the model ac-
cordingly. When the interval was set to 4, the insufficient
sparsity of global attention led to out-of-memory during in-
ference at a resolution of 40962. therefore, We limits the
resolution to 20482 to obtain results, which showed a slight
decrease in accuracy due to the resolution reduction. When
the interval was set to 16, the overly sparsification hinders
grid attention from effectively establishing long-range de-
pendencies, leading to a slight decrease in accuracy. Over-
all, an interval of 8 is a more suitable choice.

Interval = 4 Interval = 8 Interval = 16
NoC@90↓ 5-mIoU↑ NoC@90↓ 5-mIoU↑ NoC@90↓ 5-mIoU↑

7.89 89.09 7.23 89.23 7.32 89.04

Table A. Impact of grid attention interval.

5. Discussion
5.1. Comparison with other interaction forms.
Compared to scribble-based methods, our method main-
tains interaction sparsity even when dealing with objects
that contain numerous fine-grained regions. In contrast,
scribble-based methods require extensive scribbling, which
can be inefficient. Compared to bbox-based methods, our
method enables continuous refinement, a capability that
box-based methods inherently lack. This ability is crucial
for precise segmentation tasks. According to existing work
[5], it is difficult for bbox-based methods to achieve higher
segmentation accuracy than click-based methods.

5.2. Parameters of morphology process.
Smaller dilation-erosion kernels and fewer iterations result
in more narrow uncertain regions in the FBU map, whereas
larger kernels and more iterations produce more broad un-
certain regions. From the perspective of segmentation accu-
racy, the fewer uncertain pixels in the FBU map, the higher
the quality of the final mask refined by HRR. However, from
the perspective of interaction efficiency, we actually prefer



that the model does not learn overly small uncertain re-
gions. This is because there is a correspondence between
the uncertain region and the noise-tolerant click. If the un-
certain region is too narrow, it becomes more challenging to
accurately locate the noise-tolerant click, which contradicts
the original motivation of NTClick. Therefore, we chose a
balanced width for the uncertain region.
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Figure D. A, and A refer to foreground click and background click, A refers to noise-tolerant click.



Figure E. A, and A refer to foreground click and background click, A refers to noise-tolerant click.



Figure F. A, and A refer to foreground click and background click, A refers to noise-tolerant click.
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