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1. Additional Comparison Results

Table 1. Additional results on ScanNet dataset bewteen Neuralan-
gelo, Go-Surf and our method.

Methods CD ↓ NC ↑ Prec ↑ Recall ↑ F1 ↑
NeuralAngelo[4] 0.245 0.272 0.274 0.311 0.292
Ours 0.133 0.120 0.439 0.429 0.433

GO-Surf[9] 0.048 0.021 0.880 0.894 0.887
Ours (+depth) 0.027 0.020 0.931 0.928 0.930

1.1. Comparing with Neuralangelo and GO-Surf
To demonstrate the priority of our method, we further com-
pare our method with Neuralangelo [4] on ScanNet dataset,
as shown in Table 1 and Fig. 1. Neuralangelo is a state-of-the-
art reconstruction method which combines SDF optimization
from NeuS [10] and hash encoding from Instant-NGP [7].
However, it shows poor performance on ScanNet dataset,
because it is difficult for Neuralangelo to optimize the multi-
scale feature grids in indoor scenes. Additionally, it takes a
long time (about 16 hours) for Neuralangelo to optimize a
single scene.

Our method is able to reconstruct high-quality surfaces
without additional supervision from other datasets. On the
other hand, given stronger prior constraints, our method
is able to achieve better performance. To verify this, we
evaluate our method on the condition of ground truth depth
supervision on ScanNet dataset and compare our method
with GO-Surf [9], which uses RGBD data to reconstruct
indoor scenes, as shown in Table 1 and Fig. 1. Our method
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outperforms Go-Surf under all metrics, which further jus-
tifies the superiority of our method. Visual comparisons
in Fig. 1 show that our method is able to reconstruct more
complete and smooth surfaces and captures more scene de-
tails. GO-Surf can only reconstruct the surfaces which are
visible in the training views, while seriously degenerates at
the invisible areas. Our method can complete the invisible
areas and reconstruct more consistent and smooth surfaces,
thus achieving better visual effect.

1.2. Comparison on Object-centered Scenes
Previous methods like NeuS [10] and HF-NeuS [11] work
well with object-centered scenes, but struggle to reconstruct
plausible geometry in indoor scenes, unless depth or other
priors are provided. Indoor scenes contain complex topolo-
gies, various types of objects with different scales, and lack
densely surrounded perspectives, which makes the recon-
struction task challenging. Therefore in this work, we focus
on reconstructing indoor scenes and propose NeRFPrior. It
gives both density and color priors, provides a novel per-
spective for indoor scene reconstruction and does not have a
generalization issue. We further justify that our method can
extend to object-centered scenes such as DTU and Blended-
MVS. The comparison results on the two datasets are shown
in Tab. 2 and Fig. 2.
Table 2. Numerical comparison of Chamfer Distance (CD) between
SOTAs and our method on DTU dataset.

Scan 24 37 40 55 63 97 110 Mean

NeuS[10] 1.37 1.21 0.73 0.40 1.20 1.16 1.69 1.11
HF-NeuS[11] 0.76 1.32 0.70 0.39 1.06 1.12 1.22 0.94
MonoSDF 1.04 1.16 0.71 0.42 1.25 1.18 1.58 1.05
Ours 0.68 1.10 0.55 0.44 1.15 1.05 1.19 0.88

1.3. More Visualization Comparison
We provide additional visualization comparisons between
our method and baselines on ScanNet dataset, BlendSwap
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Figure 1. Visualization Comparison on ScanNet Dataset.
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Figure 2. Visual comparison on DTU and BlendedMVS.

dataset and Replica dataset, as shown in Fig. 1, Fig. 3 and
Fig. 4, separately. Our method significantly outperforms
existing methods without data-driven priors, and achieves
high accuracy. Note that we didn’t display the visual-
ization results of Manhattan-SDF [3] because the perfor-
mance of MonoSDF [13] has been proved to be better than
Manhattan-SDF. Therefore, we only compare our method
with MonoSDF instead of Manhattan-SDF.

2. Additional Implementation Details

2.1. Chosen of Backbones

To train a neural radiance field as our NeRF prior, we adopt
the grid-based architecture of TensoRF [2]. We clarify that
our innovation lies in leveraging the prior neural radiance
field to provide geometry and color clues for SDF network,

instead of proposing a novel grid-based NeRF structure. We
choose grid-based NeRF as our prior backbone because of its
rapid training speed and its ability to capture high-frequency
geometry details. To provide a clear illustration, we re-
place the structure of the prior network from TensoRF [2] to
Instant-NGP [7] and vanilla NeRF [6] and report the compar-
isons, as shown in Fig. 5. While it takes a long time to train
an vanilla MLP-based NeRF, the raw NeRF is able to bring
an improvement serving as prior. Instant-NGP, which adopts
a backbone of feature grids, shows similar result to TensoRF.
This experiment demonstrates that our prior backbone is not
confined to a grid-based structure. The key improvement
comes from pre-training a different prior network from SDF
network to provide additional clues.

2.2. Chosen of Hyper-Parameters
We train the prior NeRF for each scene in 30k iterations,
which takes about 30 minutes per scene. For our implicit
surface function, we adopt the architecture of NeuS [10],
where the signed distance function and color function are
modeled by an MLP with 8 and 4 hidden layers, respectively.
We train our implicit surface function for 200k iterations
in total. The multi-view consistency constraint is applied
after 100k iterations and the depth consistency loss is applied
after 150k iterations. We adopt such strategy based on the
observation that the multi-view consistency and depth loss
may mislead the network at the early training stage when
the surface is noisy and ambiguous. We set t0 = 0.02 in
Eq. 1, t1 = 0.04 and t2 = 0.1 in Eq. 2 in the original paper,
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Figure 3. Visualization Comparison on BlendSwap Dataset.
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Figure 4. Visualization Comparison on Replica Dataset.
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Figure 5. Choice of different NeRF priors.

λ1 = λ2 = 0.1 and decreases exponentially to 0, λ3 = 0.05
and λ4 = 0.5 in Eq. 3. All the experiments are conducted

on a single NVIDIA RTX 3090Ti GPU.

p∗ =

{
visible |c∗s − cprojs | < t0

invisible |c∗s − cprojs | ≥ t0
(1)

sgnc =

{
1 var(cproj) < t1
0 var(cproj) ≥ t1

sgnσ =

{
1 var(σ(p∗)) < t2
0 var(σ(p∗)) ≥ t2

(2)

L = Lrgb + λ1Lσ + λ2Lc + λ3Lreg + λ4Ldepth, (3)

Regarding the selection of t0, we find that the color loss
usually converges between 0.03 and 0.06 at the end of train-
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Figure 6. An illustration of our depth consistency. This is the same
as Figure 5 in the original paper.

ing, so we choose a t0 that is less than the average conver-
gence loss. Regarding t1, we visualized the effect of different
t1 on segmenting flat areas on images, similar to the paper
Super-Plane NeRF [12] Figure 9. We choose a t1 that can
divide planes as much as possible without including more
erroneous areas. The selection of t2 is similar to t1, where
we visualize small planes in 3D space and find a suitable
t2 so that these points are roughly distributed on the same
plane.

2.3. Calculation of the Plane Confidence
In subsection “Depth Consistency Loss” in the paper, we
impose depth consistency loss on surface points to improve
the smoothness and completeness of scene surfaces. Here
we discuss the calculation of confidence in detail. Our goal
is to judge whether a surface point p∗ is on a plane. To this
end, we first calculate the normal vector np∗ at p∗. Then we
can get the tangent plane at p∗. Assume that the two basis
vector of this plane are v1 and v2, and then we calculate
the 8 corner coordinates on a square neighborhood of p∗:
p1 = v1, p2 = v1 + v2, p3 = v2, p4 = −v1 + v2, p5 =
−v1, p6 = −v1 − v2, p7 = −v2, p8 = v1 − v2. We query
the prior density at the 9 locations (p∗ and p1 ∼ p8), and
calculate the variance of the density of the 9 points, which is
equivalent to var(σ(p∗)) in Eq. (8) in the paper.

2.4. Sampling Strategy for Depth Loss
There are two prerequisites before imposing depth consis-
tency loss: (i) the intersection and its neighboring points
have similar colors on the projection view, (ii) the intersec-
tion and its neighboring points are nearly on a plane. If
the two prerequisites are both met, we then constrain the
neighborhood points to maintain the same depth on their
normal directions. Specifically, while generating a batch of
training data, we sample several 3*3 patch of pixels to form
a batch. For each patch of pixels, we emit rays and calculate
the estimated depth of the rays using volume rendering. For
every 9 rays, we calculate the variation of the depths on
normal directions of the 9 intersections, and constrain the
variation to zero. In this way, we push the surface points on
textureless planes to have the same depth, thus improving
the smoothness and completeness of textureless areas.

2.5. Prior Filtering Threshold
In subsection “Neural Radiance Field Prior” in the origi-
nal paper, we mentioned that the prior density field is usu-
ally noisy, which may mislead the neural implicit network.
Therefore, we filter out the fuzzy density value and apply su-
pervision only if the density value is convincing. As shown
in Fig. 6, (a) and (b) are two cases of detected planes and
not detected planes. We notice that if the network is not
confident about the reconstructed surfaces, it tends to learn a
fuzzy distribution of density field, where 3D points near the
surface have an medium-sized density, as shown in Fig. 6
(a). On the contrary, if the network is confident about the re-
constructed surfaces, it tends to learn a significant boundary,
where 3D points near the surface have a very small density as
0 or very large density as more than 100, as shown in Fig. 6
(b). Through this way, we can use the value of density itself
as a confidence of whether the prior is convincing. Practi-
cally, we use thresholds tupper = 7 and tlower = 1e − 5
to filter density field. The supervision of density and color
is applied only if the density is larger than tupper = 7 or
smaller than tlower = 1e− 5.

3. Evaluation Metrics

Following Neural RGB-D [1] and MonoSDF [13], we adopt
Accuracy (Acc), Completeness (Comp), Chamfer Distance-
L1 (CD), Normal Consistency (NC), Precision (Prec), Recall
and F1-score (F1) as our evaluation metrics. The definitions
of the metrics are listed in Tab. 3.

To reconstruct surfaces for scenes, we use the marching
cubes algorithm [5]. For ScanNet dataset, since implicit net-
works can reconstruct artifacts in unobserved regions which
will be penalized in evaluation, we render depth maps from
the predicted mesh and refuse them using TSDF fusion [8]
following [3]. For synthetic dataset BlendSwap and Replica,
following [1], we firstly subdivide all the meshes to have a
maximum edge length of below 1.5 cm. Then we use the
ground truth trajectory of the ground truth depth maps to
detect the vertices which are visible by at least one camera.
Triangles which have no visible vertices, either due to not
being in any of the view frustrum or due to being occluded
by other surfaces, are culled. The point cloud to be evaluated
is sampled on the culled mesh with a density of 1 point per
square centimetre. All metrics are evaluated between the
predicted point cloud and ground truth point cloud.

4. Additional Visualization Results

4.1. More Visualization of Ablation Study on Depth
Loss

We provide additional visualization results of the ablation
study on depth consistency loss, as shown in Fig. 7. The
results show that our depth consistency loss further improves



Table 3. Definitions of evaluation metrics. P and Q are point clouds sampled from predicted mesh and ground truth mesh, respectively. np

is the normal vector at point p.

Metric Definition

Acc mean
p∈P

(min
p∗∈Q

∥p− p∗∥1)

Comp mean
p∈Q

(min
p∗∈P

∥p− p∗∥1)

Chamfer Distance-L1 Acc+Comp
2

Normal-Acc mean
p∈P

(nT
p np∗) s.t. p∗ = argmin

p∗∈Q
∥p− p∗∥1

Normal-Comp mean
p∈Q

(nT
p np∗) s.t. p∗ = argmin

p∗∈P
∥p− p∗∥1

Normal Consistency NormalAcc+NormalComp
2

Precision mean
p∈P

(min
p∗∈Q

∥p− p∗∥1 < 0.05)

Recall mean
p∈Q

(min
p∗∈P

∥p− p∗∥1 < 0.05)

F1-score 2×Precision×Recall
Precision+Recall

Reference Ours w/o
depth loss

Ours with
depth loss

Ground Truth Reference Ours w/o
depth loss

Ours with
depth loss

Ground Truth

这四个场景分别是room2, office0, office1, office2

Figure 7. Visualization Results of Ablation Study on Depth Consistency Loss.

the smoothness and completeness of the reconstructed sur-
faces.

4.2. Scene Reconstruction Display
We made a video in the supplementary to provide additional
examples of the reconstructed indoor scenes (Section 1 in
the video). The results show that our method is able to obtain
smooth, complete and high fidelity surfaces of scenes. Please

refer to the video for more details.

4.3. Visualization of Multi-view and Depth Loss
In our video, we additionally provide a visualization of our
depth loss (Section 2) and multi-view constraint (Section 3).
In Section 2 of the video, we firstly find out the textureless
planes using color variance and density variance. For the
textureless planes, we visualize the sampled ray positions



Figure 8. Visualization of pixel positions constrained by depth loss.

Figure 9. Visualization of projection pixels which are visible pre-
dicted by our method in source view.

𝜆1 = 0.1 (without decay) 𝜆1 = 0.1 (with decay)𝜆1 = 0.5 (with decay)

Figure 10. Visualization of different supervision weight and
whether using weight decay strategy or not. Not using weight
decay or assigning a too large weight both leads to bad reconstruc-
tion results.

in the input view in every training epoch, colored in red
points. As shown in the video and Fig. 8, our depth loss is
accurately imposed to textureless areas in the room, such
as walls, floors and floors. In Section 3 of the video, we
randomly emit rays from reference view and project the
intersections into the source view. As shown in Fig. 9, all
the non-occluded intersections are visualized as white points
in the left-bottom image. The accuracy of visibility check is
shown in the right-bottom image (red point represents wrong
and blue point represents correct). Almost all of the visibility
of the intersections in the source view are correctly predicted.
Comparing to the traditional MVS method which depends
on projection color to judge occlusion, our method of using
local-prior volume rendering achieves better accuracy of the
visibility check.
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Figure 11. Ablation on the weights of regularization term and depth
consistency loss.
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Figure 12. Failure case of our method comparing with MonoSDF*.
This is due to the weak-observation of the input few views.

5. Ablation Study
5.1. Loss Function
Our loss function can be written as

L = Lrgb + λ1Lσ + λ2Lc + λ3Lreg + λ4Ldepth, (4)

where Lrgb is the error between rendered color and ground
truth pixel color, Lσ and Lc are the supervision of density
and color from our prior field, Lreg is the regularization of
SDF field, Ldepth is our depth consistency loss. For prior
supervision, we set λ1 = λ2 = 0.1 and decrease exponen-
tially to 0, similar to the decreasing strategy in [13]. Fig. 10
provides an ablation study on the weight of prior supervi-
sion. Not using weight decay or assigning a too large weight
both leads to worse reconstruction results, because the prior
field shows poor performance in textureless areas and may
mislead the network. We also conduct an ablation study on
the chosen of λ3 and λ4, as shown in Fig. 11. Too large or
too small weights will both cause significant degeneration
of performance. We also visualize the training curve of each
loss term, as shown in Fig. 13. Metion that depth consis-
tency loss is not added at the beginning of traning because
it may mislead the network at the early training stage when
the surface is noisy and ambiguous. Each term of the loss
function smoothly decreases with the training progress.

5.2. Convergence Speed
In Fig. 14, we show the reconstruction results of MonoSDF
and our method in the early training stage. It can be seen that
under the same epochs, our method is able to highlight the
scene details much faster than MonoSDF due to the hint of
the prior field, which justifies the superiority of our method.
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Figure 13. Visualization of the training curve of each loss function term.
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Figure 14. Reconstruction results under different epochs. Our method shows significantly faster convergence speed.

5.3. Failure Case

Our method achieves better visual effects than
MonoSDF [13] in most scenes without using data-
driven priors. Fig. 12 provides an example of failure case of
our method (without depth and normal cues) comparing to
MonoSDF* (MonoSDF with depth and normal cues). The
failure case is because there are some weak-observed areas
in the dataset, such as the walls blocked by chairs, the carpet
under the tables. These areas are visible in only a few input
views, and the NeRF model can not inference the geometry
well through sparse input views. However, MonoSDF* can
recover the weak-observed areas better using the additional
data-driven depth priors and normal priors.
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