
A. Appendix

A.1. Further comparison

L 1 2 3 4 5 1⇤

GFlops 26.82 27.13 28.17 29.61 33.98 35.11
Param(M) 104 208 313 417 523 135

FID # 31.13 16.52 15.50 13.87 9.87 19.74

Table 6. Comparison of multiple model configurations over
model depth L. Unlike the baseline diffusion model (L = 1⇤)
whose computational complexity (GFlops) grows linearly with
model parameters, our efficient hierarchical design only yields
minimal GFlops growth with deeper models but achieves much
better image quality than the baseline model with the same GFlops.

Table 6 presents a comparison of model parameters and
computational complexity for models with varying depths L.
In contrast to the baseline model 1⇤, whose computational
complexity scales linearly with the number of parameters,
our efficient hierarchical design incurs only a modest com-
putational overhead for deeper models. Under a comparable
computational budget, our model with L = 5 demonstrates
significantly better performance than 1

⇤.

A.2. Derivation of formulas

Derivation for LELBO (Eqn. 2). Let x = z1 be the observed
data and z2, z3, . . . , zL be the latent variables with z>l :=

{zm}L
m=l+1

. We assume the joint distribution of data and
latent variables can be modeled as follows:

p✓(x, z>1) = p✓(x|z>1)

L�1Y

l=2

p✓(zl|z>l)p✓(zL), (5)

with the corresponding posterior written as:

q(z>1|x) = q(zL|x)
L�1Y

l=2

q(zl|z>l,x). (6)

For the derivation of the ELBO, we proceed in a similar way
as Pervez and Gavves [50], Takida et al. [65], Vahdat and
Kautz [68] by relying on Jensen’s equality:

log p✓(x) = log

Z
p✓(x, z>1)dz>1 (7)

= log

Z
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⌘ ELBO. (10)

By plugging in Eqn. 5 and Eqn. 6:

ELBO = Eq(z>1|x)


log p✓(x|z>1) (11)

+

L�1X

l=2

log
p✓(zl|z>l)

q(zl|z>l,x)
+ log

p✓(zL)

q(zL|x)

�

= Eq(z>1|x) log p✓(x|z>1) (12)
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Eq(z>l|x)DKL (q(zl|z>l,x)|p✓(zl|z>l))

�DKL (q(zL|x)|p✓(xL)) .

To incorporate diffusion models to parameterize p✓(zl|z>l),
we further decompose the KL divergence for each level
l. Since we utilize a pre-trained encoder that computes
each latent variable zl directly from the observed data x
(see Section 3.3), we can simplify the conditional posterior
distribution by removing the dependence on z>l:

�DKL (q(zl|z>l,x)|p✓(zl|z>l)) (13)

=

Z
q(zl|x)


log p✓(zl|z>l)� log q(zl|x)

�
dzl. (14)

As the posterior q has no learnable parameters ✓, then maxi-
mizing the negative KL divergence equals maximizing

Z
q(zl|x) log p✓(zl|z>l)dzl. (15)

Now assume that the latent variable zl is modeled through a
diffusion process:
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, (16)

where z(0)
l

= zl, and z(t)
l

denotes the noise latent variable
at time step t, 8t 2 {0, 1, . . . , T}. Then maximizing the
likelihood in Eqn. 15 amounts to maximizing
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(a) L = 2

(b) L = 3

Figure 7. Visualization of text-to-image generation on COCO-2014. We present example images generated by hierarchical diffusion
models of 2 and 3 levels.

Following the derivation in Sohl-Dickstein et al.1, the loss at
each level l can be further reduced as

Ll 
P

t

R
dz(0)

l
z(t)
l
q(z(0)

l
, z(t)

l
) (20)

DKL

⇣
q(z(t�1)

l
|z(t)

l
, zl,x)kp✓(z(t�1)

l
|z(t)

l
, z>l)

⌘
.

By plugging this reduced form of the loss at each level into
Eqn. 12, we arrive at Eqn. 2.

A.3. Qualitative evaluation
Additional visualizations of images generated by our model
at different depths are provided: Fig. 7 illustrates text-to-

1[82] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using nonequilibrium
thermodynamics. ICML, 2015.

image generation on the COCO-2014 dataset, Fig. 8 displays
conditional generation on ImageNet-1k, and Fig. 9 displays
unconditional generation on ImageNet-1k.



(a) L = 2

(b) L = 3

(c) L = 4

(d) L = 5

Figure 8. Visualization of conditional image generation on ImageNet-1K. We present example images generated by hierarchical diffusion
models containing from 2 to 5 levels.



(a) L = 2

(b) L = 3

(c) L = 4

(d) L = 5

Figure 9. Visualization of unconditional image generation on ImageNet-1K. More example images generated by hierarchical diffusion
models containing from 2 to 5 levels.
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