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In this supplementary document, we present the detailed
design of our avatar local deformation network, keyframe
management module and proposes regularizations on the
avatar representation. All the hyperparameters involved in
our experiments are also introduced. In addition to the eval-
uation results in the main paper, we show qualitative results
of novel view synthesis task on the NeuMan dataset and hu-
man pose estimation comparisons. We further demonstrate
the effectiveness of our avatar representation components in
the ablation study.

In the supplementary video, we demonstrate ODHSR’s
overall pipeline and its performance on various dynamic
scenes and provide visual comparisons with baseline meth-
ods.
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A. Time-pose Dependent Deformation Net-
work

Figure 5. Local deformation and ambient occlusion network. Yel-
low: Fixed parameters; Blue: Frozen parameters.

In this section, we present the details of our designed
time-pose dependent non-rigid deformation and appearance
module introduced in Sec. 3.1 in the main paper. 1

Our network design is shown in Fig.5, where two parallel
multiresolution hash encoding networks are utilized to learn
geometric and photometric deformation respectively. Given
time step t, human pose parameter θ and per-Gaussian LBS

1In Sec. A and Sec. C, we omit the subscripts of human Gaussian pa-
rameters for simplicity.
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weight W , the encodings of time and pose are denoted as
γt(t) and γp(θ;W ), respectively. Specifically, we use the
positional encoding as in [11] to encode the normalized in-
put time, where the max degree is set to be 4. For the pose,
we follow the idea of [12] to use an attention-weighting
scheme to encode only the pose parameters of joints that are
close to the Gaussian center. By doing this, the redundant
information in the global pose parameters θ can be removed
so that the local deformation around the input Gaussian will
be better learned without the spurious correlation of irrel-
evant joints. This is inspired by SCANimate [16], which
uses the LBS weight and a predefined attention map V that
limits the propagation of deformation within four neighbor-
ing joints in the kinematic tree. The pose encoding is then
formulated as follows:

γp(θ;W ) = (V ·W )⊙ θ (15)

where θ is in quaternion format and ⊙ denotes element-wise
multiplication.

Similar to [8], we use the fixed Gaussian centers µ as the
input of the hash grid to compress the size of the hash table
and prevent optimization from diverging owing to the unsta-
ble Gaussian displacements. The time and pose encodings
are concatenated with the hash encoding features queried
with the Gaussian center µ as the input of the shallow MLP
networks to produce deformation ∆µ′,∆R and 1-channel
ambient occlusion ∆c prediction. With the MLP architec-
ture, we use its smoothness prior and expect good interpo-
lation properties to be learned to facilitate generalization to
novel frames and poses. In practice, we parameterize the
rotation ∆R in the form of a quaternion vector and limit the
ambient occlusion factor within the range of 0-2.

B. Keyframe Management
In this section, we introduce our designed criteria for
keyframe selection selection.
▷ Frame interval: Only a frame whose time difference

from the last keyframe is above a threshold τt can be cho-
sen as a new keyframe so that we can avoid registering the
keyframes too frequently and idling the main thread for a
long period.
▷ Camera motion: If the displacement of the current cam-

era from that of the last keyframe is larger than a threshold
τc, we will add the current frame to the keyframe set to span
a wide baseline.
▷ Human motion: We measure the averaged human joint

displacement from the last keyframe for each frame to esti-
mate the pose change. Large human motion is likely to lead
to unobserved local non-rigid deformation and appearance
change. Thus, we register frames with drastic pose change,
where the joint displacement is above τj , to better model
the garment deformation.

▷ Gaussian covisibility: 3D Gaussians respect visibility
ordering since the rasterizer will sort Gaussians along the
camera ray. Similar to [10], we mark Gaussians as visible
if they contribute to the rendering from the camera view. We
then compute the covisibility of all the Gaussians (human +
scene) by computing the IOU value of visible ones between
the current frame and the last keyframe. If the covisibility
is below a threshold τv , the current frame will be selected
as the new keyframe to reduce redundant visual overlap be-
tween keyframes.
When a new keyframe is added or the size of the local
keyframe window is larger than τs, we update the window
with the new keyframe. Previous keyframe whose overlap
with the latest keyframe is below a threshold τr or the frame
whose camera distance from other keyframes is the farthest
will be removed from the current keyframe window. By
doing this, we update the Gaussians and networks with the
knowledge from the new keyframes, which can be general-
ized better to a subsequent frame.

C. Losses

We describe in this section the detailed formulation of pro-
posed regularizations applied on the avatar representation
that are introduced in Sec. 3.3.

Local Deformation Loss. We constrain the local deforma-
tion to be as small as possible and encourage the frame-
generic model to best learn the average shape and average.
The local deformation loss Ldeform is composed of three
parts that respectively penalize the displacement ∆µ′, push
the rotation offset ∆R to be close to the identity matrix, and
enforce the ambient occlusion factor ∆c to stay close to 1.

Ldeform = ∥∆µ′∥2 + ∥∆R−Rid∥1 + ∥∆c− 1∥2 (16)

In practice, we use quaternions to represent the rotations.

LBS Weights Loss. For each Gaussian in the canonical
space, we use the K-Nearest Neighbor (KNN) algorithm to
find the k nearest SMPL vertices vNN and take the weighted
sum of their LBS weights W̃ as the label to supervise the
Gaussian LBS weights with LLBS = ∥W − W̃∥F . Inspired
by [7], the displacements between the nearest k SMPL ver-
tices and the Gaussian center, formulated as ∆vNN =
µ + ∆µ − vNN, are used to weigh each element so that
SMPL vertices closer to the corresponding Gaussian will
contribute more to the supervision. Differently, we propose
a novel distance-based weighting that takes account of the
shape and scale of each Gaussian and calculate W̃ as fol-



lows.

W̃ =

k∑
i=1

wi

w
WNN,i (17)

wi = exp (−1

2
∆vNN,i

TΣ−1∆vNN,i) (18)

w =

k∑
i=1

wi (19)

where ∆vNN,i and WNN,i are respectively the relative posi-
tion and LBS weight of the i-th nearest vertice on the SMPL
mesh from the Gaussian center, and Σ is the Gaussian co-
variance matrix that is defined as Σ = RSSTRT .

In our experiments, we set k = 3.
Canonical Center Loss. In our online pipeline, where the
local window is typically small, each Gaussian is only vis-
ible to limited training views and is thus largely uncon-
strained. To prevent Gaussians from moving and growing
arbitrarily along the camera ray, we softly regularize the
geometry of the reconstructed human with the underlying
SMPL model. Because the garment can lead to large dis-
placements from naked-body SMPL to the reconstructed
avatar, we do not directly regularize the magnitudes of the
Gaussian displacements but instead enforce the nearest ver-
tex on the SMPL mesh from each Gaussian to be the vertex
used to initialize the Gaussian. The regularization is applied
on the canonical Gaussian centers before local deformation
as follows:

Lcenter = ReLU(∥µ+∆µ− vinit∥2 − ∥µ+∆µ− vNN∥2)
(20)

where vNN is the nearest SMPL vertex from the Gaussian
in the canonical space, and vinit is the corresponding vertex
position initially. We run the K-Nearest Neighbor algorithm
via the efficient CUDA implementation in PyTorch3D [14].

D. Implementation Details
D.1. Model Configurations
We initialize the canonical Gaussian positions by creating r
replicates of each SMPL vertex in the canonical space and
injecting Gaussian noises. r is set to be 5 for the EMDB
dataset and 3 for the NeuMan dataset. The Gaussian opac-
ities are initialized to be 0.9. We use the anisotropic Gaus-
sians for both the scene and human parts.

For the LBS weights per Gaussian, we directly optimize
an offset vector to sum to the original SMPL weights and
use SoftMax as the activation function to apply to each el-
ement of the optimized weights to ensure that their values
are all positive and sum to one.

For the time-pose dependent deformation network, the
canonical points µ are first normalized with a bounding box
that tightly encloses the canonical SMPL mesh. The de-
tailed network hyperparameters are listed in Tab. 4.

Parameter Value

Number of levels 16
Number of features per level 2
Hash table size 217

Coarsest resolution 4
Per Level Scale 1.5
MLP Width 128
MLP Number of hidden layers 3

Table 4. Local deformation and ambient occlusion network hyper-
parameters

D.2. Training Strategies

Hash Encoding Network Pretraining. Random initial val-
ues of the hash encoding network can produce incorrect out-
put on the fly when there are insufficient training frames
and the training iterations are limited. This is the typical
situation in the online training pipeline. Good interpolation
and extrapolation properties are required to quickly fit the
novel keyframe with the knowledge learned from previous
frames. Otherwise, the Gaussian parameters could also get
optimized in the wrong direction.

Considering these issues, we propose to pre-train the lo-
cal deformation and ambient occlusion networks introduced
in Sec. A at the very beginning. This is achieved by ran-
domly sampling input time and poses to obtain the defor-
mation outputs from the hash encoding network and mini-
mize the deformation loss Ldeform. We sample the input time
from a uniform distribution between 0 and 1. As for the hu-
man pose, we sample from a combination of the pose of the
first frame and poses stored in a large-scale human database
AMASS [9] so that the network is pre-trained with realistic
poses of large variations. Gaussian noises with a standard
deviation of 0.1 are added to the input pose to augment the
data. In our experiments, the poses in the BMLmovi dataset
[1] are used for sampling. We use Adam optimizer with
learning rate 10−4 to run the optimization for 5000 itera-
tions.
Multi-stage Training. We evenly divide the mapping
process into two stages and choose not to include the
time-pose-dependent deformation and ambient occlusion in
avatar Gaussians in the first stage while later activate them
in the second stage. This multi-stage training strategy is
employed in both the online mapping and final color refine-
ment steps.

D.3. Training Configurations
We use Adam Optimizer to optimize the camera and human
pose parameters. The learning rates in the tracking thread
are 3 × 10−3 for camera rotation, 10−3 for camera trans-
lation, 10−2 for the human root translation and orientation,
and 10−3 for other local pose parameters. In the mapping
thread where we simultaneously perform local bundle ad-



justment on the keyframe window, the learning rates are re-
duced to 1.5×10−3, 5×10−4, 10−4 and 10−5 respectively.
The learning rates of all the Gaussian parameters are exactly
the same as the original implementation from [6]. For our
additionally designed time-pose dependent network, we set
learning rate of all its parameters to be 10−4.

In the tracking thread, we iteratively run camera and
human pose optimization for 100 iterations with λrgb =
1, λflow = 1, λdisp = 0.001, λsil = 0.1, λkp = 0.0001 in
Eq. (14). While for mapping, we set λrgb = 1, λsil =
1, λdepth = 0.001, λLBS = 100, λcenter = 10, λdeform =
0.001 in Eq. (15). Optimized Gaussians in the mapping
thread are synchronized with the tracking thread every 20
mapping iterations. Finally when we iterate over the whole
sequence, we finetune the Gaussians with all the selected
keyframes for 100 epochs.

For keyframe selection, we set τt = 0.1s, τc = 0.05m,
τj = 0.1m, τv = 0.9 as the thresholds. As for the local
keyframe update, we set τs = 10 and τr = 0.3.

For the scene representation, we periodically perform
Gaussian densification and pruning as originally described
by 3DGS [6]. In contrast, for the fixed-size human, we dis-
able the adaptive seeding during the online mapping since
the complicated topology of the human body and the limited
training viewpoints can lead to noisy gradients, especially
in the occluded human parts. The densification and pruning
module will be later activated for humans in the final color
refinement step to capture richer details.

D.4. Baselines
When assessing the performance of novel view synthesis,
we optimize human poses across all test frames for the base-
line methods to eliminate the impact of pose errors on ren-
dering. In contrast, for our approach, this step is omitted
because the test poses are already optimized dynamically
during the process. By adopting this strategy, we provide
an advantage to the baselines, as their test poses are refined
against the final reconstruction to minimize re-rendering er-
rors. Conversely, our test poses are optimized using the on-
line reconstructed model, which may be incomplete, sub-
optimally refined, and therefore more susceptible to errors.

For consistency, we fix the Gaussian and network param-
eters across all methods and utilize each method’s specific
pose estimation module, applying the same loss functions
used during their training to perform test pose optimization.
This ensures that the evaluation of novel view synthesis re-
flects the robustness of the respective pose optimization de-
signs as well. For direct pose estimation modules, as im-
plemented in [2, 7, 13, 19], we employ a uniform learning
rate of 10−3. For the pose correction MLP network used in
[3], we maintain the same learning rate as during training.
To ensure fairness, pose optimization is conducted for 100
steps on each frame across all baselines.

ATE RMSE [m]↓

DROID-SLAM 0.079
MonoGS (human masked) 0.459
Ours (human masked) 0.247
Ours (full model) 0.084

Table 5. Camera tracking evaluation on the EMDB dataset.

E. Additional Evaluation Results
E.1. Novel View Synthesis
Qualitative results on the NeuMan dataset [4] are presented
in Fig. 6. Despite performing online tracking and map-
ping, our method surpasses most offline reconstruction ap-
proaches in terms of background scene fidelity and clarity,
even though those methods leverage ground truth camera
poses. Furthermore, our approach achieves superior quality
in the reconstruction of critical and challenging human fea-
tures, such as faces and hands. However, a limitation of our
method is that geometry near contact points between the hu-
man and the scene may not always be precisely recovered,
occasionally resulting in blurry reconstructions, as seen in
areas like shoes and the ground.

E.2. Camera Tracking
We demonstrate that our camera tracker achieves on-
par performance with the state-of-the-art SLAM approach
DROID-SLAM[18] in Tab. 5. Without knowing the true
scale, the output from DROID-SLAM cannot be seamlessly
integrated with human pose estimates unless ground truth
depth or trajectory information is provided, limiting its ap-
plicability in dynamic scenes. However, by explicitly build-
ing the dynamic human and modeling human-scene spatial
correlation, our method handles the scaling well. Moreover,
to further inspect the impact of human on the tracking, we
run MonoGS[10] and our method while using pre-estimated
human masks to completely remove the human in the input
images and the model. As shown in Tab. 5, our method sig-
nificantly enhances the accuracy of predicted camera trajec-
tories by explicitly modeling the human, as it provides ad-
ditional spatial cues and aids in scaling the monocular depth
signal.

E.3. Human Pose Estimation
We evaluate our human pose estimations and compare them
with WHAM[17] in Tab. 6 and Fig. 7. Our reconstruction-
based pose optimization module achieves slightly enhanced
local poses that align more accurately with the 2D image.
For global motion, our holistic human-scene reconstruction
supplies the essential spatial context, enabling the human
tracker to significantly reduce globally aligned joint errors.
In contrast, WHAM, lacking explicit scene awareness, fails
to adapt to terrain changes, resulting in substantial trajec-
tory errors. However, the increased jitter observed in our



(a) GT (b) Ours (c) Vid2Avatar (d) HSR (e) HUGS (f) 3DGS-Avatar (g) GauHuman
Figure 6. Qualitative comparison of novel view synthesis task on the NeuMan dataset [4].

method indicates a limitation: the gradient descent opti-
mization approach becomes ineffective for occluded body
parts that are not visible in the 2D image.

Figure 7. Comparison of global human trajectory estimations on
the EMDB dataset. Left: Human trajectories of GT, WHAM pre-
dictions and our predictions on the x-y and x-z plane. The global
trajectories are globally aligned. Right: Estimated SMPL mesh on
one selected frame.

F. Ablation Study

F.1. Ablation of Avatar Module Designs

Input and output components of the avatar deformation
module are ablated in Tab. 7. On the challenging EMDB
dataset where drastic garment deformation and illumination
change exist, jointly modeling the per-Gaussian deforma-
tion and ambient occlusion significantly improves all the
re-rendering metrics. As for the input, we achieve the best
performance by taking both the pose and time features com-
pared to using either one of them.

F.2. Ablation of Hash Encoding Network Pretrain-
ing Strategy

In Tab. 7, we also present the evaluation results without pre-
training the hash encoding network. Due to the random-
ized initial network parameters, the local deformation net-
work produces noisy outputs, resulting in failed learning of
garment deformation and shadows, particularly at unseen
timesteps and poses. The bad interpolation and extrapola-
tion properties lead to an overall degraded performance.



Local Pose Global Motion
PA-MPJPE↓ MPJPE↓ MVE↓ Jitter↓ WA-MPJPE↓ W-MPJPE↓

WHAM 40.845 72.964 83.254 14.765 636.001 2990.746
Ours 40.571 69.162 79.463 32.183 175.215 449.036

Table 6. Human pose estimation evaluation on the EMDB dataset. Jitter is in the unit of 10m/s−3 and others in mm.

PSNR ↑ SSIM ↑ LPIPS ↓
w/o ambient occlusion 28.201 0.958 0.034
w/o deformation 27.927 0.959 0.036
w/o pose encoding 28.741 0.962 0.033
w/o time encoding 27.779 0.957 0.037
w/o HE pretraining 27.801 0.958 0.041
Full model 28.955 0.966 0.031

Table 7. Ablation study on avatar module designs and hash encod-
ing (HE) network pretraining strategy. The performance is evalu-
ated on the human-only rendering on the EMDB dataset.

G. Discussions
G.1. Online Training
We follow existing dense SLAM works[5, 10, 18] to per-
form a final refinement step to finetune the Gaussian repre-
sentation with all the selected keyframes. The refinement
process can be seen as a traditional global bundle adjust-
ment (BA) step, in which case it does not conflict with
the online nature of ODHSR. Unlike other approaches, we
do not perform full BA but instead refine only the Gaus-
sians, allowing us to distribute the refinement into the online
optimization rather than applying it as a post-processing
step—though this comes at the cost of lower training FPS.
By distributing refinement into the online pipeline after
each keyframe tracking step and training for ten epochs per
refinement operation, we achieve a final PSNR of 23.013 for
the whole image and 28.814 for human-only regions, which
is slightly worse than the full model and increases runtime
(reducing FPS by 0.06). The final refinement step is de-
signed to prevent catastrophic forgetting, and we showcase
that without this, ODHSR still largely overperforms base-
lines in novel view synthesis and runtime efficiency.

G.2. Challenging Cases

Scene Occlusion. We demonstrate the impact of our
occlusion-aware human silhouette design in Fig. 8. For
body parts occluded by scene components, such as legs,
ODHSR consistently generates smooth and precise bound-
ary silhouettes. In contrast, the state-of-the-art general
segmentation model SAM[15], while capable of predict-
ing occlusions, occasionally produces results with missing
parts. By explicitly modeling occlusions, ODHSR effec-
tively models spatial correlations without losing human fea-
tures.

Figure 8. Results in the scene occlusion scenario. Our generated
human mask is compared against the prediction from the Segment
Anything Model(SAM).

Long Trajectories. In Fig. 9, we showcase the results
of our method in a long-trajectory scenario, where repeti-
tive background patterns pose challenges for camera track-
ing. Overall, ODHSR delivers decent results and effectively
captures camera motion trends with small trajectory errors.
However, the sparse features on the wall and ground in-
crease the challenge of accurate geometric reconstruction,
introducing some surface noise that subsequently leads to
additional errors in the estimated camera poses for certain
frames. DROID-SLAM performs better in such scenarios
by leveraging cleverer bundle adjustment and graph-based
optimization strategy, highlighting a promising direction for
further improvements.

G.3. Limitations
While ODHSR achieves state-of-the-art rendering qual-
ity on the challenging in-the-wild dataset, its performance
heavily depends on single-frame pre-estimations, such as
monocular depth and human keypoints—particularly in the
first frame, which initializes the system. Although we in-
corporate a pairwise flow loss in camera and human pose
optimization, we argue that this alone is insufficient for
constructing a globally consistent scene and pose repre-
sentation. Also, despite producing high-quality renderings,
our method introduces surface noise due to the nonsmooth
depth characteristics of 3D Gaussian Splatting. Addition-
ally, our method could suffer from potential human-scene
interpenetrations around the contact points, such as feet.
Due to the noisy surfaces 3D Gaussians produce, it is not yet
resolved. Finally, our model-based camera and human pose
optimization primarily relies on pixel-level errors, which
can lead to local optima in textureless regions or areas with
uniform features, such as walls and clothing.



Figure 9. Results in the long trajectory scenario. Left: Our human-scene reconstruction with tracked cameras. Right: Estimated trajectories
from ours and DROID-SLAM, compared with the ground truth on the EMDB dataset. Colors of the curve segments indicate trajectory
error, ranging from 0. to 1.
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