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A. Discussions

A.1. Limitations and Our Future Works
The limitations of our method mainly lie in two parts. First,
although we have significantly improved OmniGuard’s lo-
calization accuracy and robustness by introducing a passive
detection network, if the degradation is extremely severe
and exceeds the robustness threshold of image-in-image
steganography, our localization performance will approach
that of standard passive detection networks. This issue
might be addressed by exploring more advanced steganog-
raphy frameworks and theories, such as diffusion mod-
els [15, 16], or by establishing relevant evaluation standards
to exclude excessively low-quality images from being used
for post-event forensics. Second, although the fidelity of
our dual watermark exceeds 40 dB, we found that when
handling ultra-high-resolution images (e.g., panoramic pic-
tures [9]), the resolution scaling strategy [5] will amplify
watermark artifacts, which slightly impacts the perceptual
quality of our method. However, this is a common issue
among all current deep watermarking methods. Therefore,
exploring a truly scalable watermarking approach that can
handle arbitrary resolutions remains a worthwhile direction
for future research.

A.2. Why Use Joint Training?
To verify the impact of jointly training localized and copy-
right watermarks, as opposed to applying two separately
trained watermark models to the images, we conducted ex-
periments on both scenarios. We randomly selected 100 im-
ages and tampered with them using SD inpainting. For the
separate embedding setup, we retrained our original local-
ization watermark embedding and decoding networks and
combined them with pre-trained TrustMark [5]. The results
in Tab. 1 clearly demonstrate that without joint training, the
watermark fidelity decreases by approximately 6 dB PSNR.
However, due to the robustness of the passive extraction
network, the localization performance remains largely un-
affected. This highlights the importance of simultaneously
addressing localization and copyright protection in Omni-
Guard.

A.3. Why do we choose VAE as surrogate attacks?
To demonstrate the rationale behind using VAE instead of
InstructPix2Pix or other AIGC global editing methods, we
visualized two sets of residual maps in Fig. 1. It can be
observed that if the image is not processed via a diffusion

Table 1. Performance comparison between joint training and using
two separate watermarks.

Method PSNR (dB) SSIM F1 AUC

Separate Embedding 35.46 0.966 0.953 0.986

Joint Training (Ours) 41.59 0.985 0.975 0.999

Original Image Recovered Image Edited ImageResidual Image Residual Image

Figure 1. Residual images between the recovered image produced
by the VAE and the original image, and between the edited image
produced by InstructPix2Pix [4] and the original one.

denoising process and is only encoded and reconstructed us-
ing VAE, the artifacts in the residual map are primarily uni-
formly distributed along the edge information of the origi-
nal image. When the image is edited using InstructPix2Pix,
we find that the error map generated by editing and the
error map produced by VAE reconstruction exhibit certain
consistency in their distribution. Furthermore, the residual
map generated by editing shows smaller differences in ar-
eas outside the edited region than the errors observed in
the VAE reconstruction. Thus, the distortion caused by
VAE on the original image appears to be greater and more
global than the distortion introduced by the diffusion pro-
cess itself. Considering algorithm efficiency and computa-
tional resource consumption, we opt to introduce VAE in
our training process.

A.4. Exploration on the Localized Watermark
Considering that the localized watermark has a decisive im-
pact on the final fidelity, we have conducted extensive ex-
periments to identify the optimal localization watermark.
Finally, we arrive at the following conclusions:
• Choice of Color: Typically, selecting light-colored im-

ages allows the steganography network to better hide the
localization watermark and achieve higher PSNR. Addi-
tionally, using solid-colored images often facilitates sub-
sequent localization and detection.

• Challenges with Solid Colors: However, using solid-
colored images can result in grid-like or repetitive arti-
facts on the image, which may be visually unappealing
and raise security concerns.

• Adding Texture: Adding natural, uncomplicated texture
details to solid-colored images significantly improves the



Table 2. Localization performance metrics for EditGuard and OmniGuard under different degradations.

Method Metrics Clean JPEG(Q=60) JPEG(Q=70) Bri. Con. Hue S.-P. GS Noise

EditGuard
F1 0.951 0.515 0.912 0.536 0.876 0.946 0.921 0.821

AUC 0.971 0.785 0.961 0.817 0.945 0.963 0.968 0.944
IoU 0.935 0.365 0.865 0.410 0.809 0.905 0.862 0.709

OmniGuard (Ours)
F1 0.961 0.810 0.938 0.927 0.926 0.964 0.951 0.958

AUC 0.999 0.982 0.998 0.959 0.960 0.999 0.999 0.999
IoU 0.928 0.713 0.888 0.999 0.999 0.933 0.911 0.922

JPEG Q = 60 JPEG Q = 70 Brightness Contrast Hue Salt-pepper GS Noise
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Figure 2. Localization performance of our OmniGuard and EditGuard on several different degradation conditions. Our method can produce
clear masks under various noisy conditions, while EditGuard shows confusion and blurriness under certain severe degradations.

fidelity of the watermarked image (such as the light-toned
blue sky with clouds used in our paper).

• Adaptive Watermark Transform: Coupled with our de-
signed adaptive watermark transform, the fidelity of the
hidden localized watermark is further enhanced.
These considerations help balance fidelity, detection, and

security, making the watermark both effective and visually
acceptable.

B. More Implementation Details
Localized watermark hiding and decoding: Our local-
ized watermark hiding and decoding network adopts the ba-
sic structure of EditGuard [17]. It uses a network composed
of 16 stacked addition affine transformation layers, where
each reversible transformation module employs a Dense-
Block. Additionally, we adopt a decoding network con-
structed with stacked residual blocks to predict the missed
high-frequency components ẑ from Irec, enabling accurate
inverse decoding of our network.

Copyright watermark hiding and decoding: Follow-

ing [5], we use a MUNIT-based Unet [8] as our water-
mark embedding network, treating the image watermark-
ing as image translation. The watermark is interpolated to
match the original image’s dimension and fused into the in-
put feature via a light network. Our extractor is a standard
ResNet50 with the last layer being replaced by a sigmoid-
activated FC to predict the watermark. Note that, we use the
resolution scaling strategy [5] to enable our OmniGuard to
support arbitrary resolutions.

C. More Experimental Results
C.1. Robustness of Our Localization
To further demonstrate the robustness of our localization
performance, we have detailed our localization results un-
der different degradation conditions and compared them
with the current state-of-the-art active localization method
EditGuard. We selected 1000 images from the COCO
dataset and tampered with them using SD Inpaint. We con-
sider various degradation conditions, including JPEG com-
pression (Q=50, 60, 70), Gaussian noise (σ = 15), salt-
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Figure 3. Localization and copyright recovery performance on the most recent AIGC-Editing tool MagicQuill [11]. The recovered bit
accuracy is shown below. Without any tuning, our method can accurately locate the tampered regions of SOTA editing methods and restore
the original copyright.

and-pepper noise, and color jitter (adjustments to bright-
ness, contrast, and hue). Tab. 2 presents the F1-score, AUC,
and IoU of our OmniGuard and EditGuard. We find that
under degradation conditions, OmniGuard consistently out-
performs EditGuard and remains largely unaffected by dif-
ferent types of degradation. Notably, under severe degra-
dations such as JPEG compression (Q=60) and a 30% re-
duction in brightness, OmniGuard shows a significant im-
provement compared to EditGuard. As shown in Fig. 2,
our method can accurately identify the tampered regions,
whereas EditGuard often highlights imprecise and blurry
regions under severe degradations.

C.2. Generalization to SOTA AIGC-Edit Methods
To validate the generalization capability of our method,
we tested OmniGuard on two of the latest state-of-the-art
AIGC-Edit methods: the recently released and widely dis-
cussed MagicQuill [11], and SDXL-inpainting [14]. Fig. 3
shows the results of OmniGuard on MagicQuill. It can
be observed that our method accurately identifies the tam-
pered regions and correctly extracts the copyright informa-
tion, even when MagicQuill’s edits are highly subtle and
difficult to detect with the naked eye. Fig. 4 further demon-
strates that on SDXL, a fine-grained editing method, Om-
niGuard significantly outperforms passive methods such as
PSCC-Net [10], MVSS-Net [7], and IML-ViT [12] in terms
of detection accuracy and generalization. Meanwhile, we
can almost completely decode the hidden copyright even

Regeneration
bmshj2018-

factorized [2]
bmshj2018-

hyperprior [3]
mbt2018-
mean [13]

mbt2018
[13]

cheng2020-
anchor [6]

TrustMark 0.841 0.796 0.776 0.806 0.762
OmniGuard 0.956 0.933 0.921 0.923 0.897

Table 3. Bit accuracy comparison of our OmniGuard and Trust-
mark on SOTA recent watermarking attack benchmarks [1].

under the interference of SDXL inpainting. Notably, when
applied to these new AIGC manipulations, OmniGuard re-
quires no fine-tuning or retraining, presenting good gener-
alization ability.

C.3. Robustness on Image Regeneration
To better validate the robustness of our method against
global edits, we adopted a state-of-the-art watermarking at-
tack benchmark [1] and tested five typical image regenera-
tion methods including [2, 3, 6, 13]. As reported on Tab. 3,
our method significantly outperforms TrustMark [5] across
various regeneration attacks and demonstrates good gener-
alization to most unseen AIGC generation methods.

C.4. Fidelity of Our OmniGuard
To further validate the fidelity advantages of our method,
we test it on high-resolution (1024×1024 and 1792×1024)
AIGC-generated images. As shown in Fig. 5, we find that
EditGuard, when applied to high-resolution images, tends
to produce regular color blocks and artifacts in sparse back-
ground areas. In contrast, OmniGuard maintains satisfac-
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Figure 4. Localization performance of our OmniGuard and other competitive methods on the SOTA AIGC-Editing Method [14].

tory fidelity. We further present residual maps for both
methods, scaled by a factor of 10 for better visibility. It can
be observed that, overall, OmniGuard’s error map is slighter
than EditGuard’s while maintaining excellent content adap-
tiveness. The watermark artifacts are added to areas such as
the sky, balloons, clouds, distant mountain peaks, and water
ripples in the background. These regions are less percepti-
ble to the human eye compared to the main subjects, such
as people and prominent patterns in the image. These re-
sults further validate the effectiveness of our method and its
general applicability across different data domains.
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Figure 5. Fidelity comparison between our OmniGuard and EditGuard in some AI-generated high-resolution images. The residual maps,
amplified by a factor of 10, are placed below the watermark images. Our OmniGuard shows better fidelity, with watermark artifacts
primarily concentrated in background regions that are less perceptible to the human eye.
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