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In this supplementary material, we validate the soundness of the dynamic Gaussian prior both theoretically and experimen-
tally (§A), evaluate performance using WI and A-OSE metrics (§B), present incremental learning experiments and additional
ablation studies (§C), visualize the box detection results on novel classes (§D), and include a detailed discussion of related
work (§E).

A. Soundness of dynamic Gaussian prior
In Eq. 3, we propose a dynamic Gaussian prior for LKL to resolve the issue of losing diversity in low-data regimes. To
demonstrate the importance of the dynamic Gaussian prior in building a robust objectness model for reducing the cross-
entropy between class and objectness variables (formulated as pseudo-labeling), we provide theoretical analysis and experi-
mental verification.

A.1. Theoretical Analysis
Starting with a key lemma to lay the foundation for our proof, we delve into the probabilistic objectness model, highlighting
the risks of losing diversity, especially in low-data regimes. Our analysis then shows that dynamic Guassian prior introduced
into our LKL effectively mitigates this issue.

Lemma 1 Given random variables X1, X2 from two distributions, we sample data at a ratio of α to 1−α to create X . With
µ1, µ2 and σ2

1 , σ
2
2 representing the mean and variance of X1, X2 respectively, the mean and variance of of X are:{

E[X] = αE[X1] + (1− α)E[X2] = αµ1 + (1− α)µ2

D[X] = ασ2
1 + (1− α)σ2

2 + α(1− α)(µ1 − µ2)
2

(A.1)

Proof: Below we provide the proof for the variance:

D[X] =E[(X − E[X])2] = E
[
X −

(
αµ1 + (1− α)µ2

)2]
=αE[(X1 − µ1 + µ1 − (αµ1 + (1− α)µ2))

2]

+ (1− α)E[(X2 − µ2 + µ2 − (αµ1 + (1− α)µ2))
2]

=αE[(X1 − µ1)
2] + α[(1− α)(µ1 − µ2)]

2

+ (1− α)E[(X2 − µ2)
2] + (1− α)[α(µ1 − µ2)]

2

=ασ2
1 + (1− α)σ2

2 + α(1− α)(µ1 − µ2)
2

A.1.1. Issue of losing diversity
Theorem 1 Consider a query embedding q̌t from known classes at iteration step t, following N (µ̌t, σ̌

2
t ), and a query

embedding q̃ from unknown objects or backgrounds, following N (µ̃, σ̃2). Combining two distributions in a α to 1 − α
data ratio, we model them as a single distribution N (µt,σ

2
t ), simplifying our approach by using σ2

t instead of a covariance
matrix. Keeping q̃ fixed, we alternate between estimating the mean/variance of this unified distribution:{

µt+1 = αµ̌t + (1− α)µ̃

σ2
t+1 = ασ̌2

t + (1− α)σ̃2 + α(1− α)(µ̌t − µ̃)2
(A.2)

and maximization likelihood over queries from known classes by minimizing:

min
q̌t

( q̌t − µt

σt

)2

(A.3)



This alternating process between statistical estimation and likelihood maximization leads to convergence as t → ∞:
q̌t→∞ = µ̃

µt→∞ = µ̃, σ2
t→∞ = (1− α)σ̃2

µ̌t→∞ = µ̃, σ̌2
t→∞ = 0

(A.4)

Remark: Theorem 1 reveals that alternating optimization reduces the diversity of query embeddings for known classes. As
t → ∞, during the distribution estimation step, the mean value µ approaches µ̃ and its variance σ decreases by 1−α. During
the maximization step, known queries q̌ concentrate densely around µ, with their variance approaching zero. In other words,
the high density of known queries and reduced variance diminish diversity, leading to bias toward known classes. This issue
becomes more pronounced in low-data regimes with limited training data, where diversity diminishes rapidly at small t.

Proof: Eq. A.2 follows directly from Lemma 1. We proceed to prove Eq. A.4. By minimizing Eq. A.3, we find that the
optimal scenario occurs when all q̌t = µt, implying µ̌t = µt and σ̌t = 0. Denote µ̌0 as the initial mean of embeddings of
known classes, then:

µ1 = αµ̌0 + (1− α)µ̃

µ2 = α2µ̌0 + α(1− α)µ̃+ (1− α)µ̃ = α2µ̌0 + (1− α2)µ̃

µt = αtµ̌0 + (1− αt)µ̃

Given 0 < α < 1, as t → ∞, αt → 0. Thus µt→∞ = µ̃, µ̌t→∞ = µ̃, and σ̌2
t→∞ = 0, resulting in σ2

t→∞ = (1 − α)σ̃2.
This completes the proof.

A.1.2. Dynamic Gaussian prior perseveres diversity
As noted in the main paper, the KL divergence between the estimated objectness posterior and a static normal prior mitigates
overfitting and prevents latent space collapse. However, it suffers from logarithmic divergence in low-data scenarios. To ad-
dress this, we inject Gaussian noise into the estimated objectness posterior, forming a dynamic Gaussian prior as a surrogate.
Herein, we demonstrate that the dynamic Gaussian prior performs a similar function to the static normal prior, mitigating
overfitting and preserving the diversity of latent embeddings, with its divergence dynamically adjusted by the parameter β.
Below, we analyze its effect on the optimization of latent query embeddings.

Theorem 2 Using notations from Theorem 1, we introducing a disturbance ϵ ∼ N (0,β2) to estimated objectness prior
during likelihood maximization, represented as:

min
q̌t

( q̌t − ϵ− µt

σt

)2

(A.5)

As t → ∞, the alternating process between likelihood maximization and statistical estimation yields:
q̌t→∞ = µ̃+ ϵ,where ϵ ∼ N (0,β2)

µt→∞ = µ̃, σ2
t→∞ = (1− α)σ̃2 + αβ2

µ̌t→∞ = µ̃, σ̌2
t→∞ = β2

(A.6)

Remark: Compared with Theorem 1, Theorem 2 reveals that during likelihood maximization, adding noise introduces a
relaxation factor ϵ that enables the embeddings from known classes to retain some degree of diversity and discriminability.
This relaxation, coupled with increased variance σ, reduces the tendency to concentrate on known classes, allowing higher
scores for potential unknown objects than without noise.

Proof: Following a derivation similar to Theorem 1, we find that the optimal outcome by minimizing Eq. A.5, is q̌t =
µt + ϵ, ϵ ∼ N (0,β2). This leads to

µ̌t = µt, σ̌
2
t = β2 (A.7)

As with Theorem 1, when t → ∞, µt→∞ = µ̃. Using Lemma 1, we deduce σ2
t→∞ = (1 − α)σ̃2 + αβ2, thus completing

the proof.
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Figure 5. (a) Effective rank (eRank) [40] for each method, averaged over training on Taks1. OWOBJ-Sobj : removes objectness score and
replaces pseudo-labels from the probabilistic objectness model with random soft labels; OWOBJ-LKL: removes LKL; OWOBJ-Lenergy:
removes Lenergy . (b) U-Recall (%) for unknown detection and (c) mAP (%) for known detection of PROB+OWOBJ w.r.t. vaying margins
(δ) in Lenergy for Task1 on M-OWODB dataset.

A.2. Ablation studies for dynamic Guassian prior
To validate our analysis and the efficacy of dynamic Gaussian prior, we analyze the effective rank (eRank) [40], a measure of
feature diversity, where a higher eRank indicates better preservation of information or feature diversity, and thus, potentially
superior representation. We compare the eRank across different methods: OWOBJ-Sobj , OWOBJ-LKL, OWOBJ-Lenergy,
and our final method OWOBJ. As shown in Fig. 5a, the eRank of variants OWOBJ-Sobj , which removes objectness score and
using randomly generated soft labels for pseudo-labeling, and OWOBJ-LKL, which removes LKL, are significantly lower
than that of OWOBJ. This supports the assertion in Theorem 2 that noise addition enhances feature diversity. Moreover,
OWOBJ achieves the highest eRank, confirming its effectiveness in addressing the issue of losing diversity and producing
meaningful, diverse feature representations.

A.3. Ablation studies for margin δ

To assess the impact of margin δ on performance, we varied δ and plotted the results on Task 1 of OWOD, using U-Recall for
unknown detection and mAP for known objects, as shown in Fig. 5b and 5c. We can see that without Lenergy, both U-Recall
and mAP decreased by 2.5% and 1.3%, respectively. As δ increased to 0.2, the performance for known objects saturated,
showing limited sensitivity to the margin δ. However, the U-Recall for unknown objects begins to decline, suggesting that
larger margins introduce uncertainty by pushing unknown detections into low-probability regions. Thus, δ = 0.2 achieves
the best balance between known and unknown object detection.

B. Evaluation using WI and A-OSE Metrics
In §5.1, we discuss additional evaluation metrics that shed light on the performance of different open-world object detection
(OWOD) methods. Table 5 compares these methods on the M-OWODB dataset [20], focusing on unknown recall (U-recall),
wilderness impact (WI), and absolute open-set error (A-OSE). Among these metrics, U-recall accesses the effectiveness of
OWOD models in detecting unknown objects, serving as an indicator of their proficiency of identifying unlabeled objects. WI
and A-OSE, in contrast, measure the model’s susceptibility to confuse unknown instances with known classes. Specifically,
WI quantifies the impact of unknown detections on the model’s precision, noting that as U-recall increases, the prominence of
unknown object precision can lead to a rise in WI, even when the models exhibit similar unknown object precision. Therefore,
WI tends to escalate with U-recall. On the other hand, A-OSE measures the total count of unknown instances mistakenly
identified as known classes, with less sensitivity to changes in U-recall.

Upon reviewing Table 5, it is evident that PROB+OWOBJ surpasses all other OWOD techniques in U-recall while si-
multaneously maintaining lower A-OSE values. This indicates that our method excels at detecting unknown objects while



reducing the misclassification of unknown instances as known classes.

Table 5. State-of-the-art comparison for unknown object confusion on M-OWODB using wilderness impact (WI), absolute open set error
(A-OSE) and unknown class recall (U-Recall, which quantifies a model’s ability to retrieve unknown object instances). PROB+OWOBJ
outperforms PROB in WI, A-OSE, and U-Recall across multiple tasks, indicating reduced misclassification of unknowns as background
and improved detection of unknown instances. Note that WI, A-OSE and U-Recall are not applied to task 4, where all 80 classes are
known, and are therefore excluded.

Task IDs (→) Task 1 Task 2 Task 3

U-Recall WI A-OSE U-Recall WI A-OSE U-Recall WI A-OSE
(↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓)

ORE − EBUI [20] 4.9 0.0621 10459 2.9 0.282 10445 3.9 0.0211 7990
2B-OCD [51] 12.1 0.0481 - 9.4 0.160 - 11.6 0.0137 -
OW-DETR [17] 7.5 0.0571 10240 6.2 0.0278 8441 5.7 0.0156 6803
OCPL [34] 8.3 0.0413 5670 7.6 0.0220 5690 11.9 0.0162 5166
PROB [71] 19.4 0.0569 5195 17.4 0.0344 6452 19.6 0.0151 2641

PROB+OWOBJ 23.6 0.03951 3102 23.8 0.0215 4032 25.1 0.0085 821

C. More Experiments
C.1. Incremental Object Detection
Previous studies [17, 71] showed that incremental object detection (iOD) performs well at detecting unknown objects. This
success is attributed to its ability to reduce confusion between unknown objects, known classes and background, allowing the
detector to progressively learn new object classes as foreground instances.

We evaluate our method on incremental object detection tasks, with results presented in Tab. 6. The table compares
PROB+OWOBJ with existing approaches on PASCAL VOC 2007, using the evaluation protocols from [17, 51]. In each
evaluation scenario, the model is first trained on a subset of object classes (10/15/19), followed by the incremental introduc-
tion of additional classes (10/5/1). Our method achieves final mAP scores of 69.9, 73.3, and 75.8, surpassing the previous
state-of-the-art, PROB, which achieves scores of 66.5, 70.1, and 72.6, respectively.

C.2. Add-on with other methods
We integrate our OWOBJ into MEPU-FS [14] and CAT [33]. For MEPU-FS, we substitute its REW with our fpr

obj for scoring
unknown proposals and replace Eq. 5 in MEPU-FS with our Eq. 6 to assign objectness scores for unknown proposals.
As shown in Tab. 7, we achieve a 2.3%-3.1% improvement in U-Recall and a 1.8%-2.4% increase in known mAP across
Tasks 1-4 on S-OWODB. Building upon CAT (with cascade decoupled decoding and self-adaptive pseudo-labeling (SPL)),
where class queries as latnet objetcness boost U-Recall by 1.4%-3.7% and known mAP by 1.1%-2.9% across Tasks 1-4 on
S-OWODB (even without SPL, still achieving + 0.7%-2.1% in U-Recall).

C.3. Comparison with the PROB Baseline
PROB treats all unmatched queries as potential unknown objects by assigning pseudo-labels of 1. During inference, it
leverages objectness scores to correlate with classification. In Tab. 2 of the main paper, the variant OWOBJ-Sobj assigns
pseudo-labels to unknowns by sampling from a uniform distribution U(0, 1). To enable a more comprehensive and fair
comparison with PROB, we introduce OWOBJ-Sobj(1), which, similar to PROB, assigns an objectness score of 1 to all
unmatched queries Q̄. We then apply the same change to OWOBJ-Lobj , resulting in OWOBJ-Lobj(1), and compare both
with PROB w/ or w/o correlation. Tab. 8 shows U-Recall/Known mAP (Task 1, M-OWODB). With correlation, both
OWOBJ-Lobj(1) and PROB improve known mAP but lower U-Recall, while OWOBJ-Sobj(1) shows a smaller increase in
U-Recall, indicating that Lobj and LKL together strengthen open-world objectness modeling.

D. Visualization
D.1. Open-World Object Detection (OWOD)
Fig. 6 presents qualitative results from COCO dataset, comparing how OW-DETR, PROB, and PROB+OWOBJ perform in
detecting both known and unknown objects. Notably, OW-DETR demonstrates limitations in detecting unknown objects,



Table 6. State-of-the-art comparison for incremental object detection (iOD) on PASCAL VOC. We evaluate three settings using per-class
AP and overall mAP@50 as metrics. The 10, 5 and 1 classes in gray background are introduced to a detector trained on the remaining
10, 15 and 19 classes, respectively. PROB+OWOBJ achieves favorable performance compared to existing OWOD approaches in all three
settings.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [41] 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.2
Faster ILOD [36] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.1
ORE − (CC + EBUI) [20] 53.3 69.2 62.4 51.8 52.9 73.6 83.7 71.7 42.8 66.8 46.8 59.9 65.5 66.1 68.6 29.8 55.1 51.6 65.3 51.5 59.4
ORE − EBUI [20] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.5
OW-DETR[17] 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7
PROB [71] 70.4 75.4 67.3 48.1 55.9 73.5 78.5 75.4 42.8 72.2 64.2 73.8 76.0 74.8 75.3 40.2 66.2 73.3 64.4 64.0 66.5

PROB+OWOBJ 75.9 80.7 73.3 52.1 58.8 77.7 is 81.9 79.1 47.9 77.8 70.4 78.9 80.3 79.3 80.0 45.1 70.2 78.4 68.5 68.4 69.9

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [41] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.8
Faster ILOD [36] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE − (CC + EBUI) [20] 65.1 74.6 57.9 39.5 36.7 75.1 80 73.3 37.1 69.8 48.8 69 77.5 72.8 76.5 34.4 62.6 56.5 80.3 65.7 62.6
ORE − EBUI [20] 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5
OW-DETR [17] 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4
PROB [71] 77.9 77.0 77.5 56.7 63.9 75.0 85.5 82.3 50.0 78.5 63.1 75.8 80.0 78.3 77.2 38.4 69.8 57.1 73.7 64.9 70.1

PROB+OWOBJ 82.8 80.0 82.4 60.1 68.0 79.9 90.0 86.4 54.4 83.1 64.2 77.3 85.1 80.3 80.1 42.1 73.2 61.8 77.9 68.7 73.3

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [41] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.2
Faster ILOD [36] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.5
ORE − (CC + EBUI) [20] 60.7 78.6 61.8 45 43.2 75.1 82.5 75.5 42.4 75.1 56.7 72.9 80.8 75.4 77.7 37.8 72.3 64.5 70.7 49.9 64.9
ORE − EBUI [20] 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.8
OW-DETR [17] 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2
PROB [71] 80.3 78.9 77.6 59.7 63.7 75.2 86.0 83.9 53.7 82.8 66.5 82.7 80.6 83.8 77.9 48.9 74.5 69.9 77.6 48.5 72.6

PROB+OWOBJ 86.1 83.9 83.4 62.9 65.9 79.9 90.6 87.3 56.9 86.5 70.3 85.9 84.7 86.9 81.6 51.9 78.8 73.5 80.7 53.8 75.8

Table 7. The results of implementing our objectness modeling in both MEPU-FS [14] and CAT [33].

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall ↑ Known mAP ↑ U-Recall ↑ Known mAP ↑ U-Recall ↑ Known mAP ↑ Known mAP ↑

MEPU-FS 37.9 74.3 35.8 54.3 35.7 46.2 41.2
MEPU-FS+OWOBJ 39.7 77.4 37.8 57.2 38.1 49.0 43.5

CAT (w/ SPL) 24.0 74.2 23.0 50.7 24.6 45.0 42.8
CAT (w/o SPL) +OWOBJ 26.1 75.4 23.7 51.5 26.0 45.6 43.2
CAT (w/ SPL) +OWOBJ 27.7 77.1 24.9 53.3 27.0 49.0 43.9

Table 8. Comparison with the PROB on Task 1, M-OWODB.

Method (→) PROB OWOBJ-Sobj(1) OWOBJ-Lobj(1)

U-Recall ↑ Known mAP ↑ U-Recall ↑ Known mAP ↑ U-Recall ↑ Known mAP ↑

w/ corr. 19.4 59.5 21.5 60.0 20.2 58.2
w/o corr. 21.1 39.3 21.0 43.9 22.3 41.3

primarily due to its reliance on unreliable heuristic methods in selecting unknown labels during training (e.g., using the top
5 activation values from backbone features), leading to a low recall for unknown objects. While PROB avoids heuristic-
based pseudo-labeling, it fails to effectively capture the objectness posterior distribution. As a result, the classifier lacks
the ability to perceive the objectness of the observed data, frequently misclassifying most regions as unknown objects. This
leads to a high recall for unknown objects, but it significantly compromises the performance of detecting known object. Our
method jointly measures both the class and objectness distributions, effectively balancing high detection performance for
both unknown and known objects.
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Figure 6. Qualitative examples on example images from the COCO test set on the first and last tasks. OW-DETR tends to miss unknown
objects, leading to low unknown recall. RROB detects more unknown objects while suppressing the known detections. Our method
achieves high detection performance for both unknown and known objects.

D.2. Few-Shot Object Detection (FSOD)
Fig. 7 illustrates the qualitative results of our approach on FSOD under the 5-shot protocol, showcasing detections for both
base (top panel) and novel (bottom panel) classes. For base classes (e.g., cup, carrot, vase, and oven), DeFRCN+OWOBJ
significantly reduces redundant detections, improving the overall precision and efficiency of the detector (the second row).
For novel classes, our method effectively recognizes unseen objects that were not part of the base training set (the last row).
Notably, DeFRCN+OWOBJ not only improves the detection of novel objects but also achieves more accurate localization, as
evidenced by tighter and more precise bounding boxes. These results demonstrate OWOBJ’s strong generalization to novel
object classes with minimal training samples, aligning with the overarching goal of few-shot object detection.

D.3. zero-shot Open-Vocabulary Object Detection (OVOD)
Fig. 8 provides a comparative visualization of box predictions generated by the baseline CORA (first and third rows) and
CORA+OWOBJ (second and fourth rows) on the OV-LVIS dataset. The results clearly demonstrate the advantages of inte-
grating OWOBJ into the baseline. CORA+OWOBJ successfully detects novel objects missed by the baseline. For example,
in the last image of the second panel, CORA+OWOBJ successfully detects a smaller-scale ring that the baseline fails to
identify, highlighting the improved sensitivity and generalization of our method, even for challenging and subtle objects.
Moreover, the integration of the energy-based margin loss enables CORA+OWOBJ to assign higher confidence scores to
unknown objects, distinguishing them more effectively from the background. This improvement is evident in the magni-
fied regions that focus on the predicted bounding boxes, where CORA+OWOBJ provides more accurate and well-calibrated
detections than the baseline.

D.4. Failure cases
Fig. 9 presents an analysis of the failure modes of CORA+OWOBJon the OV-LVIS validation set. Unrecognized novel
objects are marked with red bounding boxes, showing the challenges that our approach still faces. Despite the advancements
of OWOBJ some challenging scenarios remain where the model struggles to generalize effectively, particularly with novel
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Figure 7. Visualization of FSOD detection results: Box predictions for base classes (top panel) and novel classes (bottom panel) under
the 5-shot protocol. For base classes (e.g., cup, carrot, vase, oven), ours (DeFRCN+OWOBJ) effectively reduces redundant detections (the
second row). For novel classes, ours (DeFRCN+OWOBJ) improves the recognition of novel objects with more precise localization (the
last row). Zoom in for the best view.

objects that exhibit low contrast, occlusion, or appear in cluttered environments.

E. Related Work

Open-World Object Detection (OWOD). OWOD is rendered more challenging than open set classification [3, 9, 18, 28] by
the fact that instances of many unknown classes may be present but unlabeled in the training data. Since they are unlabeled,
these unidentified instances are at risk of being learned as background [20]. The first OWOD method was ORE [20] which
adapted the Faster-RCNN model by incorporating feature-space contrastive clustering, an RPN-based unknown detector, and
an Energy-Based Unknown Identifier (EBUI). Yang et al. [53] introduced semantic topology to ensure the discriminative and
consistent nature of feature representations. Zhao et al. [63] used Selective Search and a class-specific expelling function
to compensate for over-confident activation boundaries. Transformer-based methods have shown significant promise in
addressing OWOD. OW-DETR [17] was the first model to exhibit a deformable DETR (D-DETR)-serial detector [69] tailored
for OWOD tasks. OW-DETR utilized a pseudo-labeling scheme to supervise unknown object detection, where unmatched
object proposals with high backbone activations are selected as unknown objects (Top5 by default). This unknown object
discovery strategy often selects parts of known proposals, or genuine background regions, however, leading to unreliable
pseudo-labels for unknown objects, thereby resulting in low unknown object detection performance. Conversely, PROB [71]
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Figure 8. Qualitative visualization of OV-LVIS validation set for novel classes. Rows 1 and 3 depict results generated by the baseline
CORA, while Rows 2 and 4 display detection results produced by ours (CORA+OWOBJ). Zoom in for the best view.

does not identify unknown objects but instead trained a probabilistic objectness head alongside D-DETR. PROB fails to
measure the objectness posterior, however, and this hinders the classifier’s ability to differentiate real objects from non-
objects. Without calibrating classification confidence with objectness scores during inference, OWOD performance degrades
significantly. Moreover, PROB is limited to OWOD, and its extension to other novel object detection tasks remains unclear.
Few-shot Object Detection (FSOD). FSOD can be categorized into transfer learning and meta-learning paradigms. Meta-
learning-based detectors employ a stage-wise, periodic meta-training paradigm to train a meta-learner, facilitating knowledge
transfer from base classes. Meta R-CNN [52] re-weights query RoI features by support prototypes in the detection head.
FSOD-ARPN [13] uses a channel-wise attention for RPN and multi-relation detector. PNSD [59] extends FSOD-ARPN
by contracted autocorrelation matrix to improve attention. KFSOD [61] and TENET [60] extend PNSD with kernel/tensor
representations. With the balanced dataset introduced in TFA [47], fine-tuning-based detectors are outperforming meta-
learning-based methods. MPSR [48] deals with scale invariance by ensuring the detector is trained over multiple scales of
positive samples. NP-RepMet [54] introduces a negative- and positive-representative learning framework via triplet losses
that bootstrap the classifier. Similarly, FSCE [43] aims to decrease instance similarity between objects belonging to different
categories by adding a secondary branch to the primary RoI head, which is trained via supervised contrastive learning. De-
FRCN [37] proposes to perform stop-gradient between the RPN and the backbone to deal with the inconsistent optimization
goals between them.
Zero-Shot/Open-Vocabulary Object Detection (OVOD). Scaling up box-level annotations is costly and labor-intensive;
however, zero-shot detection facilitates identifying novel categories absent from the training data. OVR-CNN [58] first
proposes the OVOD benchmark to bridge the performance gap between Zero-Shot and supervised learning. Specifically,
it integrates image-language alignment knowledge from large pre-trained vision-language models (VLMs), such as CLIP
[38], into object detectors. Current techniques are generally divided into four strategies: pseudo-labeling [58, 62, 64, 65],
distillation [11, 15], conditional matching [49, 57] and parameter transfer [25, 49]. Although such methods leverage the



Figure 9. Analysis of failure modes of CORA+OWOBJ on the OV-LVIS validation set. Unrecognized novel objects are marked with red
bounding boxes. Zoom in for the best view.

strong zero-shot recognition capabilities of VLMs to handle open vocabularies, open vocabulary detectors primarily rely on
base detection data with box-level annotations during optimization, inherently biasing them toward base categories. As a
result, novel objects are easily regarded as background or base categories, underscoring the need for general objectness.


