
PanSplat: 4K Panorama Synthesis with Feed-Forward Gaussian Splatting

Supplementary Material

The supplementary material is organized as follows.
In Sec. A, we provide additional details on the network ar-
chitectures. In Sec. B, we provide additional details on the
Gaussian parameter prediction and rendering. In Sec. C,
we provide additional details on the experiment settings.
In Sec. D, we provide quantitative comparisons on nar-
row baselines. In Sec. E, we provide more ablation stud-
ies. In Sec. F, we provide details on extending to real data.
In Sec. G, we provide details on scaling up to 4K resolution.
Finally, in Sec. H, we provide details on the demo video.

A. Network Architectures
In Sec. 3 of the main paper, we present our PanSplat archi-
tecture in two parts: the Hierarchical Spherical Cost Vol-
ume (Sec. 3.2) and the Gaussian Heads (Sec. 3.3). Here, we
provide additional details on the network architectures.
Hierarchical Spherical Cost Volume. For feature pyramid
extraction, we adopt a FPN architecture [46] enhanced with
a Swin Transformer [48]. The Swin Transformer consists of
6 Transformer blocks, each with a self-attention layer and a
cross-view attention layer. We use the xFormers [36] library
for the transformer-based network for better efficiency. We
apply Swin Transformer to the coarsest level of the feature
map from the FPN encoder, then upsample the feature map
to different levels with the FPN decoder. The result is a
feature pyramid with 4 levels, with channel dimensions of
128, 96, 64, 32 from the coarsest to the finest level. For
hierarchical spherical cost volume refinement, we adopt a
2DU-Net [16] with cross-view attention at the bottleneck
layer for each level. We set depth candidates to 128, 64,
32 and channel dimensions of 2D U-Net to 128, 64, 32 for
each level, respectively.
Gaussian Heads. We adopt a lightweight 3-layer CNN ar-
chitecture for each Gaussian head, with a kernel size of 3→3
and a stride of 1, to extract feature map F̃ l

i
for each view i

at level l. We then sample a feature vector from the feature
maps for each Gaussian, based on the pixel location defined
on the Fibonacci lattice. Finally, a linear layer is applied to
predict the Gaussian parameters (µl

i
, ωl

i
,!l

i
, cl

i
). Specifi-

cally, to estimate Gaussian centers µl

i
, we first estimate the

correlation vectors cl
i
, then apply the same operations used

for the cost volume to get a depth, which is then unprojected
to 3D coordinates as mentioned in Sec. 3.1 of the main pa-
per. The opacity ωl

i
is predicted as a scalar value, followed

by a sigmoid activation to normalize it to [0, 1]. The co-
variance ! is composed of scaling vectors and quaternions,
where the scaling is calculated as predicted normalized vec-
tors sl

i
↑ [smin, smax] multiplied by the pixel size. This re-

stricts the Gaussian to a similar scale as the pixel, account-
ing for the change in pixel size across different levels. The
color cl

i
is represented as spherical harmonic coefficients.

B. Gaussian Parameter Prediction and Ren-
dering Details

In Sec. 3.3 of the main paper, we introduce Gaussian heads
with local operations and a cubemap renderer. Based on
these two components, we propose a two-step deferred
backpropagation technique to enable training at 4K reso-
lution. Here, we provide additional details on the deferred
backpropagation technique, as shown in Fig. B.1, as well as
the two components it relies on.
Tiled Operation for Gaussian Heads. We mentioned
in Sec. 3.3 of the main paper that we exploit the local op-
erations in the Gaussian heads to enable tiled operation for
inference and deferred backpropagation. To be more spe-
cific, the inputs to the Gaussian heads on different levels
are evenly split into N → N tiles, then fed into the Gaus-
sian heads separately. However, this naive tiled operation
impacts the boundary value of the output tiles, due to the
zero padding of each convolutional layer, leading to discon-
tinuity at the tile boundaries. Instead, we refine this design
to output results identical to the non-tiled operation with a
pre-padding operation. First the inputs are padded by 3 pix-
els, to accommodate the field of perception of the Gaussian
heads. The padding involves copying the border pixels of
left and right sides to the opposite side, which ensures loop
continuity of the spherical geometry. The top and bottom
sides are padded with zeros. Then, the tile regions are en-
larged by 3 pixels to include the above padding, and intro-
duce a 3-pixel overlap between adjacent tiles. The output
tiles are finally cropped to the original size, stitched to a
continuous, full resolution output.
Details of Cubemap Renderer. One key component of
two-step deferred backpropagation is the cubemap renderer,
which provides a differentiable rendering pipeline for the
spherical 3D Gaussian pyramid. As shown in Fig. B.1, the
cubemap renderer renders 6 faces (front, back, left, right,
top, bottom) of the cubemap separately, then stitches them
into an equirectangular panorama. This allows sequential
face rendering for memory efficiency or batched face ren-
dering for speedup. We build the cubemap renderer based
on the CUDA 3DGS renderer [34] that implements with
perspective camera projection. After rendering each face,
we apply a bilinear grid sampling to stitch the faces into an
equirectangular panorama. Specifically, the coordinates of
pixels in the equirectangular panorama are first transformed



Output Novel View("#, %, &) GT Novel View
Image Loss

Image Gradients Cache

Cubemap Renderer

Gaussian 
Heads

Gaussian 
Heads

Depth Loss

Cubemap Renderer
("#, %, &) tiles Gaussian Parameters

Gradients Cache

Spherical 3D Gaussian
Pyramid

Forward pass with auto-differentiation disabled

Step1: Re-render cubemap face by faceStep2: Re-generate Gaussian parameters tile by tile

Forward pass

Backward pass

Input Panoramas

Output Depth Maps

GT Depth Maps

Hierarchical 
Spherical

Cost Volume

Figure B.1. Two-step deferred backpropagation. We propose a training strategy tailored for high-resolution panorama novel view
synthesis. See Sec. B for details. For simplicity, intermediate results of only a single view are shown.

to the corresponding coordinates on the cubemap image.
Then the pixel values are sampled from the cubemap image
using bilinear interpolation. To achieve seamless stitching,
we pad the edge pixels of the adjacent 4 faces to each face,
ensuring the pixels interpolated on the edge have correct
neighboring pixels from two nearby faces.
Details of Two-step Deferred Backpropagation. As
shown in Fig. B.1, the two-step deferred backpropagation
consists of a forward pass and two deferred backpropaga-
tion steps. Before the forward pass, we construct the hier-
archical spherical cost volume with auto-differentiation on,
and preserves the computational graph throughout the train-
ing step for efficiency. Then we disable auto-differentiation
for a forward pass to render the full panorama. The full
panorama is used for computing an image loss, with auto-
differentiation on, to backpropagate and cache gradients to
the image. Subsequently, we enable auto-differentiation
and backpropagate gradients in two steps. In step one, the
panorama is re-rendered face by face as cubemap to back-
propagate and accumulate gradients to the Gaussian param-
eters. In step two, the Gaussian parameters are re-generated
tile by tile, with gradients backpropagated and accumulated
to the network parameters. Additionally, the gradients from
the depth loss are accumulated to the network together with
the gradients from the image loss. When training on real
datasets without ground truth depth, the depth loss is re-
placed by auxiliary Gaussian heads and image loss as dis-
cussed in Sec. 3.4 of the main paper. In Sec. G, we provide
more details on how the two-step deferred backpropagation
saves memory consumption during training.

C. Experiment Details
High-resolution Synthetic Datasets. For synthetic data,
we use the low-resolution (512 → 1024) synthetic datasets
Matterport3D [11], Replica [56], and Residential [26] ren-
dered by PanoGRF [17]. Additionally, we render two
high-resolution datasets (1024 → 2048 / 2048 → 4096) us-
ing Matterport3D for fine-tuning. Specifically, we follow
PanoGRF’s rendering protocol to render 6 perspective im-
ages at 512 → 512 / 1024 → 1024 resolution respectively on

the cubemap faces, then stitch them into an equirectangular
panorama image. We render 2 views with a baseline of 1.0
meter as input, and 1 view in the middle as the target view.
The two datasets contain 5,000 / 2,000 samples for training.
We render the test set in consistent with PanoGRF, with 10
samples for each dataset, which are used for demonstration
in the demo video.
High-resolution Real Datasets. We use two real-world
datasets to demonstrate generalization to real-world scenar-
ios. For fine-tuning to real images, we use the 360Loc [30]
dataset as it provides accurate pose registration from dense
point cloud reconstructions and lidar scans. In addition, it
is the largest dataset with high-resolution panoramic image
sequences as far as we know, with 18 sequences (12 daytime
and 6 nighttime) across 4 scenes, totaling 9,334 frames. We
select one scene with 5 sequences as the test set, and fine-
tune on the other 3 scenes with 13 sequences. When fine-
tuning, we randomly sample two views with varying base-
lines spaced 1 to 4 frames apart and select a target view in
between. During evaluation, we select two views spaced
2 frames apart as input, and use all 4 views as the target
to calculate the metrics. For analyzing image quality over
different frame distances in Sec. F, we find that 360Loc
is too sparse (average baseline of 0.47 meters) to provide
a reasonable amount of frame distance samples. There-
fore, we also capture a high-resolution Insta360 dataset with
two sequences (one indoor and one outdoor) totaling 38K
frames. Insta360 is recorded at 8K resolution and 24 FPS,
later down-sampled to 4K for evaluation. We use Open-
VSLAM [57] for camera pose estimation, disabling loop
closure to avoid bad loop detection in repetitive environ-
ments. For evaluation purposes, we select two views spaced
15 frames apart as input, and evaluate all 17 frames. For
evaluation on both datasets, we evenly sample 100 pairs of
input views for each sequence, and average the results over
all target views.
Implementation Details. We set the number of depth can-
didates D for the coarsest level to 128. Our model is imple-
mented in PyTorch and trained on a single 80GB NVIDIA
A100 GPU using the Adam optimizer with a learning rate of
2→10→4. We use the pre-trained weights of UniMatch [71]



Baseline 0.2m 0.5m

Method PSNR↓ WS-PSNR↓ SSIM↓ LPIPS↔ PSNR↓ WS-PSNR↓ SSIM↓ LPIPS↔
S-NeRF 20.79 19.52 0.697 0.376 17.95 16.81 0.628 0.486

OmniSyn 28.95 28.26 0.913 0.180 26.59 26.07 0.890 0.201
IBRNet 30.53 29.63 0.927 0.136 28.22 27.26 0.884 0.199
NeuRay 33.54 32.33 0.949 0.107 30.88 29.81 0.920 0.154

PanoGRF 34.29 33.27 0.952 0.098 31.41 30.46 0.924 0.132
MVSplat 32.93 32.04 0.955 0.063 31.55 30.58 0.943 0.075
PanSplat 33.92 32.88 0.959 0.066 32.46 31.42 0.950 0.072

Table D.1. Quantitative comparison on narrow baselines. We compare on Matterport3D under the baseline of 0.2 and 0.5 meters. Top
results are highlighted in top1 , top2 , and top3 .

to initialize the Swin Transformer of feature pyramid ex-
tractor. We also load the pre-trained weights of the monoc-
ular depth model [33] trained by PanoGRF [17] and freeze
it during training. Initially, we train the model on Matter-
port3D with an image height of 256 and a batch size of 6 for
10 epochs, then fine-tune it with an image height of 512 and
a batch size of 2 for 5 epochs. For 4K Matterport3D fine-
tuning, we gradually increase the resolution from a height
of 1024 to 2048 over 3 epochs at each stage. To fine-tune
on 4K 360Loc, we incrementally raise the resolution from a
height of 512 to 1024 and finally 2048, with 65K, 26K, and
13K iterations for each stage, respectively. At resolutions
of 1024 and 2048, we enable two-step deferred backpropa-
gation with 4 and 16 tiles, setting batch sizes to 3 and 1, re-
spectively. When fine-tuning on 360Loc at 1024 and 2048,
we freeze the hierarchical spherical cost volume and only
fine-tune the Gaussian heads. During evaluation, we gener-
alize the model directly from Matterport3D to the Replica
and Residential, and from 360Loc to the Insta360 dataset,
without additional fine-tuning.

D. Quantitative Comparisons on Narrow Base-
lines

We follow the evaluation protocol of PanoGRF [17] to fur-
ther evaluate on generalization to narrow baselines on Mat-
terport3D. As shown in Tab. D.1, while PanSplat achieves
the best performance at the 0.5m baseline, it also demon-
strates competitive results at the 0.2m baseline, indicating
strong generalization across varying baseline distances.

E. More Ablation Studies
In Sec. 4.3 of the main paper, we conduct an ablation study
to analyze the contributions of Fibonacci Gaussians and the
3D Gaussian pyramid. Here, we provide additional ablation
studies in Tab. E.1 and Fig. E.1 to further analyze the impact
of specific design choices in PanSplat.
Monocular Depth Features. We first ablate the use of
monocular depth features in the hierarchical spherical cost

Setup WS-PSNR↓ SSIM↓ LPIPS ↔
w/o Mono depth 28.84 0.929 0.092

w/o 3DGP residual 28.14 0.922 0.102
w/o Hierarchical CV 26.95 0.857 0.180
w/o First three GHs 28.05 0.919 0.105

Full 28.81 0.931 0.091

Table E.1. Full ablation study. We evaluate the impact of certain
design choices on PanSplat’s performance. Mono depth refers to
integrating monocular depth feature from PanoGRF [17] to the hi-
erarchical spherical cost volume, which is not our contribution and
is insignificant to performance, but we include it in the Full model
for the best results. Other design choices are ablated from the Full
model, and significantly affect the performance.

volume (w/o Mono depth) in Tab. E.1. We note that in-
tegrating monocular depth features is a common practice
in multi-view stereo methods [17, 73]. Although in our
case, the improvement is marginal, we include it in our final
model for the best performance.
Residual Design of 3D Gaussian Pyramid. Second, we
ablate the residual design of the Gaussian heads (w/o 3DGP
residual), which leads to a significant drop in performance.
To justify the performance gain from the residual design, we
separately render the Gaussians from each level in Fig. E.1.
It is shown that without the residual design, the coarsest two
levels (Level #3 and #2) fail to output meaningful Gaus-
sians, while the full model successfully distributes low fre-
quency details to the coarser levels. This demonstrates the
effectiveness of the residual design in guiding the Gaussian
heads to capture multi-scale details.
Hierarchical Designs. Finally, we ablate the Hierarchi-
cal Cost Volume (w/o Hierarchical CV) and the First three
Gaussian heads (w/o First 3 GH) respectively to analyze
the joint impact of the two hierarchical designs. Similar
to Sec. 4.3 of the main paper, for w/o Hierarchical CV,
we replace the hierarchical cost volume with a single 1/4-
resolution cost volume with 128 depth candidates to main-



w
/o

3D
G

P
re

si
du

al
w

/o
H

ie
ra

rc
hi

ca
lC

V

No stage #3

Fu
ll

Level #3 Level #2 Level #1 Level #0

Figure E.1. Visualization of 3D Gaussian Pyramid. We visualize the rendering results of Gaussians from different levels of our 3D
Gaussian Pyramid. Our full model (Full) successfully exploits the hierarchical structure of the 3D Gaussian Pyramid, where coarser levels
mainly capture global structures and finer levels capture high-frequency details. In contrast, the ablated models (w/o 3DGP residual and
w/o Hierarchical CV) fail to utilize all levels.

Figure F.1. Quantitative comparisons on different frame distances. We evaluate image quality metrics on Insta360 dataset with varying
frame distances, comparing PanSplat with (PanSplat + Deferred BL) and without (PanSplat) deferred blending against MVSplat.

tain comparable computational cost and memory usage.
The removal of each of the two components hurts the per-
formance significantly, indicating that the two hierarchical
designs complement each other to achieve the best perfor-
mance. We find that w/o Hierarchical CV tends to fall into
local minima where only the coarsest level is utilized, as
shown in Fig. E.1.

F. Extending to Real Data
Deferred Blending. In Sec. 3.3 of the main paper, we in-
troduce a deferred blending technique to mitigate artifacts
from misaligned Gaussians due to moving objects and depth
inconsistencies. Here we provide additional details. Specif-
ically, on real datasets, instead of directly consolidating the
Gaussians from two input views for rendering, we first sep-

arately render them from the same target view into two dif-
ferent images, which we denote as {Ĩi}1

i=0. Then we blend
them based on the distances di to the input views i by:

I =
d1Ĩ0 + d0Ĩ1

d0 + d1
. (4)

The deferred blending aims to mitigate the influence of far-
ther input view when rendering close to one of the input
views, and relief the burden of matching moving objects.
Experiments. To evaluate the impact of deferred blending,
we analyze the relationship between image quality (WS-
PSNR, SSIM, and LPIPS) and frame distance (the num-
ber of frames between the target view and the nearest in-
put view) on the Insta360 dataset. We compare PanSplat
with (PanSplat + Deferred BL) and without (PanSplat) de-



Figure G.1. Full GPU memory consumption at different reso-
lutions, where → indicates out-of-memory errors even on a 80GB
A100. Note that w/ Deferred BP (1 step) is overlapped with w/ De-
ferred BP (16 tiles) for inference. Memory consumption is tested
with a batch size of 1.

ferred blending, using MVSplat as a baseline. As shown
in Fig. F.1, PanSplat consistently outperforms MVSplat
across all metrics and frame distances. In addition, de-
ferred blending provides notable performance gains, espe-
cially when the frame distance is small. We further show
visual comparisons on the 360Loc dataset in Figs. F.2 to F.5
and on the Insta360 dataset in Figs. F.6 to F.9. These results
demonstrate that deferred blending significantly reduces ar-
tifacts arising from misaligned Gaussians (e.g., the dot pat-
tern on the ceiling in Fig. F.7) and moving objects (e.g.,
the camera operator at the bottom in Fig. F.3). It also pro-
vides nearly perfect results when rendering at the same lo-
cation as one of the input views by isolating the influence
of the farther input view. This is particularly important for
smooth transitions in virtual tours applications as shown in
the demo video.

G. Scaling Up to 4K Resolution
In Sec. 4.3 of the main paper, we evaluate how two-step de-
ferred backpropagation saves memory consumption during
training. Here, we provide additional details on the both

training and inference memory usage in Fig. G.1.
How do Fibo and 3DGP help save memory? Compar-
ing PanSplat (Full) with ablated versions (w/o Fibo, w/o
3DGP), we find that although the removal of 3D Gaussian
pyramid (w/o 3DGP) introduces less Gaussians, it still con-
sumes more memory due to slightly larger memory foot-
print of single cost volume. On the other hand, during infer-
ence, the removal of Fibonacci Gaussians (w/o Fibo) causes
out-of-memory error starting from 1792 → 3584 resolution,
a resolution that PanSplat can still support.
How does deferred backpropagation help save memory?
We then add deferred backpropagation (w/ Deferred BP)
with tile settings of 2 → 2 (4 tiles) and 4 → 4 (16 tiles). As
shown, the memory consumption drops significantly, with
16 tiles further enabling 4K inference on a 24GB RTX 3090
GPU. We use 4 tiles for fine-tuning at 1024 → 2048 resolu-
tion and 16 tiles for fine-tuning at 2048 → 4096 resolution,
with a batch size of 3 and 1, respectively.
How does two-step design based on cubemap renderer
help save memory? We also include an ablated version
with only step 2 of deferred backpropagation (1 step) with
16 tiles setting. The results show that the one-step version
consumes significantly more memory than the two-step ver-
sion when training, showing the effectiveness of cubemap
renderer in reducing memory consumption. We note that
the inference memory usage stays consistent as they share
the same cubemap renderer with sequential face rendering.

H. Demo Video
By enabling 4K resolution support, PanSplat becomes a
promising solution for immersive VR and virtual tours ap-
plications. We provide a demo video to demonstrate the su-
perior image quality of PanSplat on diverse datasets, and to
showcase its potential applications in real-world scenarios.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #1 Frame #2 Frame #3

Figure F.2. Qualitative comparisons on 360Loc dataset. We show zoomed-in regions of the generated images by MVSplat and PanSplat,
with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different columns
represent different frames in the sequence, where Frame #0 and Frame #3 of GT are input views. We render the images across all four
views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #1 Frame #2 Frame #3

Figure F.3. Qualitative comparisons on 360Loc dataset. We show zoomed-in regions of the generated images by MVSplat and PanSplat,
with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different columns
represent different frames in the sequence, where Frame #0 and Frame #3 of GT are input views. We render the images across all four
views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #1 Frame #2 Frame #3

Figure F.4. Qualitative comparisons on 360Loc dataset. We show zoomed-in regions of the generated images by MVSplat and PanSplat,
with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different columns
represent different frames in the sequence, where Frame #0 and Frame #3 of GT are input views. We render the images across all four
views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #1 Frame #2 Frame #3

Figure F.5. Qualitative comparisons on 360Loc dataset. We show zoomed-in regions of the generated images by MVSplat and PanSplat,
with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different columns
represent different frames in the sequence, where Frame #0 and Frame #3 of GT are input views. We render the images across all four
views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #4 Frame #8 Frame #12 Frame #16

Figure F.6. Qualitative comparisons on Insta360 dataset. We show zoomed-in regions of the generated images by MVSplat and
PanSplat, with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different
columns represent different frames in the sequence, where Frame #0 and Frame #16 of GT are input views. We render the images across
five evenly-spaced intermediate views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #4 Frame #8 Frame #12 Frame #16

Figure F.7. Qualitative comparisons on Insta360 dataset. We show zoomed-in regions of the generated images by MVSplat and
PanSplat, with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different
columns represent different frames in the sequence, where Frame #0 and Frame #16 of GT are input views. We render the images across
five evenly-spaced intermediate views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #4 Frame #8 Frame #12 Frame #16

Figure F.8. Qualitative comparisons on Insta360 dataset. We show zoomed-in regions of the generated images by MVSplat and
PanSplat, with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different
columns represent different frames in the sequence, where Frame #0 and Frame #16 of GT are input views. We render the images across
five evenly-spaced intermediate views to visualize different frame distances.



M
V

Sp
la

t
Pa

nS
pl

at
Pa

nS
pl

at
+

D
ef

er
re

d
B

L
G

T

Frame #0 Frame #4 Frame #8 Frame #12 Frame #16

Figure F.9. Qualitative comparisons on Insta360 dataset. We show zoomed-in regions of the generated images by MVSplat and
PanSplat, with (PanSplat + Deferred BL) and without (PanSplat) deferred blending, compared to the ground truth (GT). The different
columns represent different frames in the sequence, where Frame #0 and Frame #16 of GT are input views. We render the images across
five evenly-spaced intermediate views to visualize different frame distances.


	Introduction
	Related Work
	Method
	Spherical 3D Gaussian Pyramid
	Hierarchical Spherical Cost Volume
	Gaussian Parameter Prediction and Rendering
	Training

	Experiment
	Experimental Setup
	Comparison with Previous Works
	Ablation Study

	Conclusion
	Network Architectures
	Gaussian Parameter Prediction and Rendering Details
	Experiment Details
	Quantitative Comparisons on Narrow Baselines
	More Ablation Studies
	Extending to Real Data
	Scaling Up to 4K Resolution

	Demo Video


