
Appendix of Prosody-Enhanced Acoustic Pre-training and
Acoustic-Disentangled Prosody Adapting for Movie Dubbing

We organize the supplementary materials as follows:
• In Section A, we analyze the challenges of the V2C-

Animation benchmark compared to the traditional TTS
benchmark and GRID benchmark.

• In Section B, we provide a more detailed description of
the model implementation, including the settings of the
modules and details of the loss function.

• In Section C, we introduce the baseline models.
• In Section D, we provide additional ablation studies to

validate the effectiveness of our method.
• In Section E, we provide additional visualizations of mel-

spectrograms to compare with other baseline models.
• In Section F, we discuss the limitations of the proposed

method.

A. The Challenge of V2C-Animation Bench-
mark

As shown in Table A.1, the V2C-Animation benchmark [1]
differs significantly from traditional TTS benchmarks in
multiple aspects, and it is more challenging. The main
reasons for this are as follows: (1) The V2C-Animation
benchmark has a smaller data scale and shorter speech du-
ration compared to other datasets. As shown in Table A.1,
the V2C-Animation benchmark contains only 10,217 sam-
ples. Although it is comparable in quantity to LJSpeech [6],
the average length of each sample is only about one-third
of LJSpeech. The GRID benchmark roughly triples the
data volume with a slightly smaller average length com-
pared to V2C-Animation, LibriTTS [12] far exceeds the
V2C-Animation benchmark in both average length and
total quantity. (2) The V2C-Animation benchmark ex-
hibits more noticeable background noise compared to other
benchmarks. We estimate the signal-to-noise (SNR) ratios
and the audio quality of each dataset using deep learning-
based approachs [8, 11], and the results are shown in Ta-
ble A.1. As shown in the table, the other three datasets ex-
hibit relatively high signal-to-noise ratios because they are
recorded in studio environments without background sound,
which can provide high-quality speech knowledge for mod-
els. However, the V2C-Animation benchmark is excerpted
from real movies, which contain background and environ-
mental sounds. Its limitations in sound quality are also re-

flected in the UT-MOS metric, which measures sound qual-
ity. Compared to other TTS datasets or the GRID dataset,
V2C-Animation exhibits significant differences in speech
quality. It poses challenges for models to build dubbing
with high acoustic quality and accurate pronunciation. (3)
The V2C-Animation benchmark exhibits more significant
pitch variation. We compute the mean and variance of pitch
across different benchmarks and list in Table A.1. This fur-
ther increases the challenge of the V2C-Animation bench-
mark. (4) The V2C-Animation benchmark contains more
complex and realistic scenes compared to the GRID bench-
mark. As a multi-speaker dubbing dataset, all speakers in
GRID are recorded using the same fixed perspective and
uniform background, while V2C-Animation includes more
complex scenes from real movies. Complex scenes and en-
vironments increase the difficulty of modeling the prosody
and variation information of dubbing from visual informa-
tion.

Overall, the V2C-Animation benchmark is more chal-
lenging than traditional TTS benchmarks or GRID dubbing
benchmark, both in terms of the scale and acoustic quality,
as well as the complexity of the visual scene.

Table A.1. Difference between V2C-Animation benchmark and
other benchmarks.

Dataset Sample Number Avg. Length (s) SNR (dB) Pitch (Hz) UT-MOS
LJSpeech [6] 13,100 6.57 26.59 1921.75 ± 1249.77 4.37
LibriTTS [12] 149,736 6.34 26.72 2025.21 ± 1221.06 4.09

GRID [4] 33,000 1.83 23.77 1473.71 ± 1195.36 3.97
V2C-Animation [1] 10,217 2.46 10.15 1955.81 ± 1301.60 2.26

B. Implementation Details

B.1. Dataset Splits

Following VDTTS [5] and HPMDubbing [2], the GRID and
V2C-Animation datasets have no individual valid sets, the
valid sets are mixed with their train sets. For GRID, we take
100 random videos from each speaker as a test set and use
the remainder 900 examples per speaker as training data.
For V2C-Animation, the number of training and test data
are 6517 and 2779, respectively.



B.2. Detail of Each Module

Our proposed model contains several modules, including
an open-source grapheme-to-phoneme (G2P) module1, pre-
trained modules, and those updated only during specific
training phases. To facilitate a better understanding of our
design, we provide an overview of the training status of each
module as shown in Table A.2.

Table A.2. The status of each module in the second stage.

Module Pretrained First Stage Second Stage
Acoustic Text Encoder ✓
Acoustic Style Encoder ✓
Audio Decoder ✓
Prosody Extractor ✓
Text Aligner ✓
Prosodic Text Encoder ✓
Prosodic Text BERT Encoder ✓
Prosodic Style Diffusion ✓
S3FD ✓
EmoFAN ✓
In-Domain Emotion Analysis ✓
Prosody Predictor ✓
Lip Motion Encoder ✓

B.3. Training Loss in Second Stage

The total loss function of the acoustic-disentangled training
stage is:
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where the Lp, Le, and Ld are the L1 loss between the
ground-truth and predicted spectrogram frame-level pitch,
spectrogram frame-level energy, and phoneme-level dura-
tion, respectively. It is noteworthy that the spectrogram
frame-level pitch and energy are obtained by upsampling
the predicted phoneme-level pitch and energy after align-
ment with the ground truth. LSp is the diffusion L1 Loss at
the feature level for prosodic style features.

1https://github.com/bootphon/phonemizer

B.4. Ablation Implementation Details
w/o Acoustic Pre-training (AP). We directly train the
acoustic system and prosody adaptation modules of the
model on the V2C-Animation dataset without employing
any prosody enhancement strategies.
w/o Prosody Enhancement (PE). We use the original
LibriTTS-460 dataset to pre-train the acoustic system of the
model without employing any prosody enhancement strate-
gies.
w/o In-Domain Emotion Analysis (IDEA). We utilize
pre-trained modules S3FD and EmoFAN to extract video
frame-level emotion feature sequences from the facial re-
gions of characters in the given movie clips, which are then
directly used as Q and V for fusion with prosodic text fea-
ture Tp.
w/o Prosodic Style Diffusion (PSD). We remove the
acoustic-prosody disentanglement at the style level by not
using the prosodic style encoder and prosodic style diffu-
sion modules and directly substitute prosodic style feature
Sp with the acoustic style feature Sa.
w/o Prosodic Text BERT Encoder (PTBE). We remove
the acoustic-prosody disentanglement at the text modality
by removing the prosodic text BERT encoder and directly
substituting the prosodic text feature Tp with the acoustic
text feature Ta.

C. Baseline Introduction
We compare our model with seven relevant methods for
which code is available.
1) StyleSpeech [9] is a TTS method based on the Fast-
Speech2 [10] framework, which utilizes a style encoder and
meta-learning to adapt to multi-speaker environments.
2) Zero-shot TTS [14] is a content-dependent fine-grained
speaker method for zero-shot speaker adaptation.
3) V2C-Net [1] is the first visual voice cloning model for
movie dubbing. It introduces the visual feature into the
modeling of spectrogram frame-level prosody modeling.
4) HPMDubbing [2] is currently the most advanced movie
dubbing model. It employs a hierarchical prosody modeling
approach to connect the prosody of dubbing with the lip
movements, expressions, and scenes in movie clips.
5) FaceTTS [7] is a novel diffusion-based TTS approach
attempting to use facial to synthesize voice timbre.
6) StyleDubber [3] is a method that models movie dubbing
styles using phoneme-level pronunciation habits and fine-
grained character emotions.
7) Speaker2Dubber [13] is a two-stage dubbing method.
In the first stage, the model’s phoneme encoder is pre-
trained using a large-scale speech-text corpus, which sig-
nificantly enhancing the pronunciation accuracy of the dub-
bing.

In the experimental tables of the main text, baseline



Table A.3. Results of duration alignment on V2C-Animation benchmark.
Setting Dub 1.0 Dub 2.0

Methods T-S SECS (%) ↑ WER (%) ↓ UT-MOS ↑ EMO-ACC (%) ↑ MCD-DTW ↓ MCD-DTW-SL ↓ SECS (%) ↑ WER (%) ↓ UT-MOS ↑
Ours + In-Domain Lip Motion ✓ 75.01 8.61 3.06 48.23 9.34 9.37 75.31 11.71 3.05

Ours + Style Duration ✓ 74.93 8.39 3.07 47.64 9.38 9.41 74.85 12.05 3.06

Ours ✓ 75.46 8.04 3.10 48.93 9.29 9.32 75.39 11.50 3.09
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Figure A.1. More visualization of the mel-spectrograms of ground truth and synthesized dubbing of different models. The red and white
bounding boxes highlight regions where different models exhibit significant differences in audio quality and pronunciation details.

models marked with “*” indicate TTS models that in-
corporate additional visual feature inputs to adapt to the
movie dubbing task following [1]. “T-S” indicates that
the model employs a two-stage training strategy, similar
to Speaker2Dubber [13], which involves pre-training the
phoneme encoder. The diverse selection of baselines allows
for a more comprehensive comparison of the model’s per-
formance.

D. Supplementary Experiments

We design two variants for the duration alignment. The
first uses a similar approach to in-domain emotion analysis
to eliminate the visual domain gap in lip motion features,
while the second employs AdaIN to incorporate prosodic
style features into lip motion features. The experimental
results are shown in the Table A.3.

The experimental results indicate that the lip motion en-
coder itself already considers the impact of the visual do-
main gap and focuses more on capturing lip motion and
changes. Therefore, in-domain analysis does not enhance

the model’s performance in duration alignment. Addition-
ally, duration alignment should only be related to lip motion
and phoneme pronunciation features. Therefore, incorpo-
rating prosodic style features does not improve the model’s
performance.

E. Qualitative Analysis

We visualize the mel-spectrograms of ground truth and
dubbing generated by different models for comparison in
Figure A.1. The red bounding boxes represent regions
where different models exhibit significant differences in au-
dio quality and the white regions present the difference in
pronunciation details. Through the observation of the red
bounding box, it is evident that our method exhibits less
noise in the non-pronunciation intervals of dubbing com-
pared to other models, indicating better acoustic quality.
Additionally, the clearer spectrum lines in the white bound-
ing box and the closer resemblance to the ground truth in
terms of prosody (the shape of spectrum lines) show that
our method also achieves better pronunciation quality and



prosody alignment performance.

F. Limitations
Although our proposed method significantly improves the
acoustic quality of the generated dubbing, there remains a
gap compared to speech generated by Text-to-Speech mod-
els. An ideal movie dubbing model should function like
a dubbing actor, generating dubbing with acoustic quality
comparable to speech, while also incorporating exaggerated
and diverse prosody that matches character performances,
the proposed model has not yet achieved this. Additionally,
the prosody-enhanced acoustic pre-training does not fully
meet expectations in terms of voice cloning. How to more
effectively extract timbre from low-quality audio in movie
dubbing datasets remains an unresolved challenge.
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