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Supplementary Material

A. Proof of Three-dimensional Mapping

In Sec. 3.1, we introduce constraints for three-dimensional
mapping and present Eqn. (4). We will provide the detailed
deduction and proof in this section.

We assume that the encoded values follow the same dis-
tribution across each dimension, implying that the absolute
values of the weights of each dimension are equal. To sim-
plify, we further assume that all dimensions have identical
weights. Based on this assumption, the following formula
can be derived:

  m_1+m_2+m_3=0. \label {eqn:plane}      (9)

This equation describes the two-dimensional plane in
which the mapping data resides. The normal vector of the
plane can be expressed as w = [1, 1, 1]T .

One-dimensional values are mapped into a three-
dimensional unit space (i.e., each dimension has a value
range of [−1, 1]) to form a circular curve. Given this con-
dition and the plane defined in Eqn. (9), we can derive that
the distance from any encoded values to the origin is equal
to 3

2 . Thus, we derive the following formula:

  m_1^2+m_2^2+m_3^2=\frac {3}{2}. \label {eqn:cycle} 
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We apply a basis transformation along with the paramet-
ric equation of a circle to derive the analytic solution. In
this context, we define two unit vectors that lie on the plane:
v = [− 1√

2
, 1√

2
, 0]T and u = [ 1√

6
, 1√

6
,− 2√

6
]T . These vec-

tors form an orthonormal basis for the plane. Using this
basis, we can re-express any encoded values on the plane in
terms of these vectors:

  \boldsymbol {m}=r(\boldsymbol {u}\cos \theta +\boldsymbol {v}\sin \theta ). \label {eqn:re_express}         (11)

Here, r represents the polar diameter. By combining
Eqn. (11) and Eqn. (10), we obtain r2 = 3

2 . Therefore, the
analytic solution for the encoded values on the plane can be
expressed as:  \begin {bmatrix}m_1\\m_2\\m_3\end {bmatrix}=\begin {bmatrix}\frac {1}{2} & -\frac {\sqrt {3}}{2}\\\frac {1}{2} & \frac {\sqrt {3}}{2}\\-1 & 0\end {bmatrix} \begin {bmatrix}\cos \theta \\\sin \theta \end {bmatrix}=\begin {bmatrix}\cos (\theta +\frac {2\pi }{3})\\\cos (\theta +\frac {4\pi }{3}) \\ \cos (\theta +\frac {6\pi }{3})\end {bmatrix}. \label {eqn:trans_result} 
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Eqn. (12) aligns with Eqn. (1) proposed in PSC, allowing
PSC to be interpreted from a unified perspective of dimen-
sional mapping.
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Figure 6. A comparison between the traditional annotation method
and our approach, which uses pseudo-rotated labels from a weakly
supervised model. It demonstrates our method simplifies and im-
proves the efficiency of the annotation process.

B. Detail in Dataset Annotation
Fig. 6 illustrates a comparison between our annotation
method and the traditional annotation method. Notably,
the general practice for rotated annotation involves using
a rectangular box, requiring the adjustment to begin with a
horizontal rectangle. In the traditional method, the process
begins by roughly determining a horizontal bounding box
based on the object’s position, followed by rotating the box
to align with the object’s orientation and finally fine-tuning
its position. In contrast, our method employs a weakly su-
pervised model to generate pseudo-rotated labels with high
accuracy, requiring only minimal manual fine-tuning, which
greatly enhances annotation efficiency.

Additionally, the angle adjustment step can be entirely
skipped when the angle predictions are sufficiently accu-
rate. Thus, this paper aims to improve the weakly super-
vised model’s accuracy in angle prediction. To minimize
the impact of pseudo-labels on manual labeling, traditional
methods are used to label both the validation and test sets to
avoid evaluation bias.

C. Additional Experiment Results
C.1. Multi-dimensional Mapping
To simplify optimization and computation, we focus on
two-dimensional mapping and three-dimensional mapping
of UCR in this study. For higher-dimensional mappings, en-
coded values must satisfy more additional constraints. Us-
ing four-dimensional mapping and five-dimensional map-



Resolver DM AP50 AP75 mAP
PSC [58] 4 71.98 40.03 41.25

UCR (ours) 4 73.76 41.62 42.67
PSC [58] 5 72.33 38.69 39.89

UCR (ours) 5 73.85 42.86 42.98

Table 7. A comparison of previous methods with our UCR ap-
proach in higher-dimensional mappings. All experiments are
based on H2RBox-v2 [60]. Our method achieves superior per-
formance in higher-dimensional mapping scenarios.

r2
RSAR DOTA-v1.0 [45]

AP50 AP75 mAP AP50 AP75 mAP
0.5 67.89 23.96 31.75 73.18 41.37 42.05
1.5 68.33 26.17 32.64 73.99 42.10 43.10
3.0 68.45 23.37 32.00 73.78 41.31 42.03

Table 8. Ablation experiment on different ranges of mapping in
three-dimensional mapping. Constraining the mapping range to
unit space yields better results.

ping as examples, we define the corresponding constraints
and conduct experimental validation on the DOTA-v1.0
dataset.

For a four-dimensional mapping, each encoded value
must satisfy the following conditions:

∑4
i=1 m

2
i = 2

m1 +m3 = 0

m2 +m4 = 0

. (13)

For a five-dimensional mapping, each encoded value
must satisfy the following conditions:

∑5
i=1 m

2
i = 2.5∑5

i=1 mi = 0∑5
i=1 m

3
i = 0

. (14)

Table 7 presents the results of experiments on higher-
dimensional mappings. The results indicate that our UCR
achieves greater performance improvements than the pre-
vious resolvers in higher-dimensional scenarios. However,
as the number of mapping dimensions increases, the con-
straints become more complex. Therefore, we primarily fo-
cus on two-dimensional and three-dimensional mappings.

C.2. The Range of Mapping
In Sec. 3.1, we mention that there are multiple ways in
which one-dimensional values can be mapped to a circle in
multi-dimensional space. To simplify, we restrict the map-
ping range to unit space (i.e., each dimension has a value
range of [−1, 1]) and present the formula for Eqn. (4). If
this constraint of unit space is removed, we obtain a new
mapping form (i.e.,

∑n
i m

2
i = r2, where r > 0). To vali-

date the influence of different mapping forms on the model,

minvalid AP50 AP75 mAP
0 73.16 40.94 41.68

0.1 73.21 41.62 41.89
0.2 73.22 42.26 42.65
0.5 73.13 40.98 41.92
1.0 39.56 7.87 14.42

Table 9. Ablation experiments on different ranges of the invalid
region conducted by two- dimensional mapping of UCR. Optimal
results are achieved when the threshold is taken as 0.2.

Method SH AI CA TA BR HB
▼ One-stage
RetinaNet [38] 73.6 73.5 73.6 22.4 49.6 53.4
R3Det [52] 78.7 73.2 89.3 22.6 56.9 63.0
S2ANet [6] 82.3 77.8 89.8 25.8 60.2 63.0
FCOS [23] 79.0 73.0 89.8 33.9 58.8 65.5
▼ Two-stage
Faster RCNN [34] 78.3 76.8 89.5 30.8 54.7 49.0
O-RCNN [46] 79.4 75.3 89.7 29.7 56.2 58.5
ReDet [7] 79.0 78.1 89.5 25.6 55.0 61.1
RoI-Transformer [5] 85.9 76.5 90.1 27.5 57.4 64.4
▼ DETR-based
Deformable DETR [71] 58.0 51.3 66.5 21.7 36.8 45.4
ARS-DETR [61] 76.9 70.2 80.4 29.1 51.2 59.1

Table 10. The detailed fully supervised performance in various
detectors on RSAR. All results present AP50 for each category.

we utilize three-dimensional mapping as an example and
present the experimental results in Table 8. The experimen-
tal results indicate that the model achieves optimal perfor-
mance when r2 = 1.5 (i.e., unit space). A larger mapping
range can lead to more dispersed encoding states, making
optimization and prediction more challenging. Conversely,
a smaller mapping range may cause reduced differences be-
tween encoding states, resulting in prediction biases. Over-
all, restricting the mapping to unit space provides a more
generalized approach, resulting in better performance for
angle prediction.

C.3. The Range of Invalid Region.
Table 9 illustrates the effect of various invalid region ranges
on the performance of the weakly supervised model. The
findings reveal that incorporating the invalid region en-
hances model learning; however, extensive invalid regions
may lead to insufficient constraints for angle regression.

C.4. Detailed Results on Fully Supervised Model
Table 10 summarizes the performance of various fully su-
pervised models on the RSAR dataset, detailing the results
for each category. The performance is evaluated using the
AP50 metric, with categories represented by their respec-
tive abbreviations: Ship (SH), Aircraft (AI), Car (CA), Tank
(TA), Bridge (BR), and Harbor (HA).
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