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ReCapture: Generative Video Camera Controls for
User-Provided Videos using Masked Video Fine-Tuning

Supplementary Material

Pika Video Inpainting Anchor Video

Ours

Figure 9. Comparisons with inpainting methods.

QOur video results, including the gallery and ab-
lation studies, can be found at cvpr25-submission-
1616.github.io.  Alternatively, you can open the ‘in-
dex.html’ file in your browser from the supplementary
material folder path to access the website offline.

6. More Related Work

Personalization of Video Diffusion Models. At this stage
the problem of personalization of image generative mod-
els has been well explored in the last several years, with
work on subject-driven generation [4, 5, 11, 12, 18], style-
driven generation [10, 14, 17], style+subject-driven gen-
eration [13] and image-level personalization for inpaint-
ing [15]. The research direction of personalization of video
models [6] is more sparse, albeit with important recent
work such as Dreamix [8] which proposed to finetune video
models on a given video, Still-Moving [3] which mitigates
the need for customized video data by elevating a cus-
tomized image models to the video domain using spatial
and temporal adapters and Movie Gen [9] which proposes
directly training conditioning pathways for video models.
Our method targets a wholly different application than this
body of work, although these methods are important and
related.

Source Video MonST3R

Figure 10. Comparisons with 4D reconstuction method Mon-
STR3D [19].

7. Comparisons with Video Inpainting

In the first stage, we obtain the anchor video along with
a sequence of masks that represent the invalid regions of
the video. A natural approach is to follow the methods
used in Lumiere [ 1] and stable diffusion inpainting by lever-
aging an inpainting model, which uses the concatenation
of the masks and the input video as its condition. We
train such an video inpainting model using SVD [2] fol-
lowing Lumiere [1]. To evaluate the effectiveness of our
approach, we compare our mask-video fine-tuning method
against this standard video inpainting model and Pika [7]
(an inpainting tool). As demonstrated in Fig 9, our method
achieves significantly better visual quality compared to Pika
and the standard video inpainting model. Additionally, our
approach outperforms both Pika and the typical video in-
painting model on the Vbench dataset as shown in Table 4.

8. Comparisons with 4D Reconstructions

We compare our method with 4D reconstruction approaches
in Table 2 of the main paper and provide visualiza-
tion comparisons with the latest state-of-the-art method,
MonST3R [19], in Fig.10. As illustrated in Fig.10,
MonST3R exhibits significant blurring due to the rendering
trajectory being far from the training views. Similarly, most
4D reconstruction methods struggle to generalize beyond
the field of view present in the original video. In contrast,
our method leverages the strong prior of a video diffusion
model, enabling it to produce high-quality novel views even
with substantial camera movements.
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Models Subject Background | Temporal Motion Dynamic | Aesthetic | Imaging | Object
Consistency | Consistency | Flickering | Smoothness | Degree Quality Quality Class

Video Inpainting 83.48% 86.25% 72.45% 81.06% 49.25% 37.72% | 58.69% | 79.68%
Pika 83.26% 84.96% 71.02% 80.45% 49.46% 39.08% | 57.26% | 79.68%

Ours 88.53% 92.02% 91.12% 98.24% 49.03% 57.35% | 64.75% | 82.07%

Table 4. Comparisons with video inpainting methods, including the video diffusion model and the Pika video inpainting tool.

Video Camera | Original
Methods Quality | Following | Motion
Ours 96 % 72% 92%
Genreative
Camera Dolly [16] 4% 28% 8%

Table 5. User Studies for Visual Quality, Camera Following and
Original Motion.

9. User Studies

We use 35 videos that were used for VenBench in the human
evaluation. The survey is conducted on Amazon Mechan-
ical Turk. To evaluate video quality and camera trajectory
alignment(Camera Following), we present two videos from
different methods in a random sequence and ask annotators
to indicate which one has better quality and aligns more
accurately with the provided camera trajectory. Addition-
ally, to evaluate whether the subject and scene motion from
the original video is preserved in the new video(Original
Motion), we ask annotators to determine which video bet-
ter maintains the original motion. As shown in Table 5,
our method receives significantly higher human preference
across both evaluation aspects.
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