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ReCapture: Generative Video Camera Controls for
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Figure 9. Comparisons with inpainting methods.

Our video results, including the gallery and ab-611

lation studies, can be found at cvpr25-submission-612

1616.github.io. Alternatively, you can open the ‘in-613

dex.html’ file in your browser from the supplementary614

material folder path to access the website offline.615

6. More Related Work616

Personalization of Video Diffusion Models. At this stage617

the problem of personalization of image generative mod-618

els has been well explored in the last several years, with619

work on subject-driven generation [4, 5, 11, 12, 18], style-620

driven generation [10, 14, 17], style+subject-driven gen-621

eration [13] and image-level personalization for inpaint-622

ing [15]. The research direction of personalization of video623

models [6] is more sparse, albeit with important recent624

work such as Dreamix [8] which proposed to finetune video625

models on a given video, Still-Moving [3] which mitigates626

the need for customized video data by elevating a cus-627

tomized image models to the video domain using spatial628

and temporal adapters and Movie Gen [9] which proposes629

directly training conditioning pathways for video models.630

Our method targets a wholly different application than this631

body of work, although these methods are important and632

related.633

MonST3RSource Video Ours

Figure 10. Comparisons with 4D reconstuction method Mon-
STR3D [19].

7. Comparisons with Video Inpainting 634

In the first stage, we obtain the anchor video along with 635

a sequence of masks that represent the invalid regions of 636

the video. A natural approach is to follow the methods 637

used in Lumiere [1] and stable diffusion inpainting by lever- 638

aging an inpainting model, which uses the concatenation 639

of the masks and the input video as its condition. We 640

train such an video inpainting model using SVD [2] fol- 641

lowing Lumiere [1]. To evaluate the effectiveness of our 642

approach, we compare our mask-video fine-tuning method 643

against this standard video inpainting model and Pika [7] 644

(an inpainting tool). As demonstrated in Fig 9, our method 645

achieves significantly better visual quality compared to Pika 646

and the standard video inpainting model. Additionally, our 647

approach outperforms both Pika and the typical video in- 648

painting model on the Vbench dataset as shown in Table 4. 649

8. Comparisons with 4D Reconstructions 650

We compare our method with 4D reconstruction approaches 651

in Table 2 of the main paper and provide visualiza- 652

tion comparisons with the latest state-of-the-art method, 653

MonST3R [19], in Fig.10. As illustrated in Fig.10, 654

MonST3R exhibits significant blurring due to the rendering 655

trajectory being far from the training views. Similarly, most 656

4D reconstruction methods struggle to generalize beyond 657

the field of view present in the original video. In contrast, 658

our method leverages the strong prior of a video diffusion 659

model, enabling it to produce high-quality novel views even 660

with substantial camera movements. 661
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Models Consistency
Subject

Consistency
Background

Flickering
Temporal

Smoothness
Motion

Degree
Dynamic

Quality
Aesthetic

Quality
Imaging

Class
Object

Video Inpainting 83.48% 86.25% 72.45% 81.06% 49.25% 37.72% 58.69% 79.68%
Pika 83.26% 84.96% 71.02% 80.45% 49.46% 39.08% 57.26% 79.68%
Ours 88.53% 92.02% 91.12% 98.24% 49.03% 57.35% 64.75% 82.07%

Table 4. Comparisons with video inpainting methods, including the video diffusion model and the Pika video inpainting tool.

Methods Quality
Video

Following
Camera

Motion
Original

Ours 96% 72% 92%

Camera Dolly [16]
Genreative 4% 28% 8%

Table 5. User Studies for Visual Quality, Camera Following and
Original Motion.

9. User Studies662

We use 35 videos that were used for VenBench in the human663

evaluation. The survey is conducted on Amazon Mechan-664

ical Turk. To evaluate video quality and camera trajectory665

alignment(Camera Following), we present two videos from666

different methods in a random sequence and ask annotators667

to indicate which one has better quality and aligns more668

accurately with the provided camera trajectory. Addition-669

ally, to evaluate whether the subject and scene motion from670

the original video is preserved in the new video(Original671

Motion), we ask annotators to determine which video bet-672

ter maintains the original motion. As shown in Table 5,673

our method receives significantly higher human preference674

across both evaluation aspects.675
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