Ref-GS: Directional Factorization for 2D Gaussian Splatting

Supplementary Material

This supplementary material provides additional infor-
mation and experiment results pertaining to the main paper
including detailed descriptions of the training process, and
more visual results to complement the experiments reported
in the main manuscript.

For more information regarding the method, we highly
encourage readers to watch our video provided in the sup-
plemental webpage, where our method produces results
with better specular reflection reconstruction.

A. Implementation Details

For training, we use the PyTorch [14] framework and train
on a single Tesla V100 with 32GB of memory. Our code
is build upon the 2D Gaussian Splatting (2DGS) [4] code-
base. For real scenes, we propose using the same spherical
domain strategy as 3DGS-DR [20] to train our model for a
fair evaluation. This approach can reduce background in-
terference during training. Background objects, captured
from only limited viewpoints, exhibit similar behavior to
reflective objects, which interferes with the fitting of our
Sph-Mip.

A.1. Network

The goal of the shallow MLP fg is is to non-linearly map
the directional feature S € RY*Wx16 produced by the
Sph-Mip encoding and the high-dimensional intermediate
tensor K ® S has a shape of H x W x 64. Our MLP ac-
cepts an input having 16 4-64 feature dimensions. The input
is fed into a 2-layer MLP with 256 neurons per hidden layer
in them followed by ReLU [I] activation functions. The
output is fed into a output head predicts the view-dependent
radiance with a exponential function output layer. Finally,
we apply gamma tone mapping [2] v(-) to convert the colors
into the sSRGB space before calculating the rendering loss:
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A.2. Optimization

The per-Gaussian position ;1 € R3, scale s € R? and co-
variance as rotation q € R4, opacity @ € R, diffuse color
cq € R3, roughness p € [0,1], feature f € R* are opti-
mized together with the network weights for the base MLP
and the output head for view-dependent radiance. We use
the Adam [7] optimizer with default parameters. Further,
we follow the default splitting and pruning schedule pro-
posed by the original 2DGS.

A.3. Losses

We have multiple loss terms in our training pipeline that are
mainly adapted from 2DGS that we will briefly outline them
and their weighting here. As in 2DGS, we use £; loss and
D-SSIM [18] loss for supervising RGB color, with A = 0.2:
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Following 2DGS, depth distortion loss and normal consis-
tency loss are adopted to refine the geometry property of the
2DGS representation of the scene.
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Here, w; represents the blending weight of the i*” intersec-
tion. z; denotes the depth of the intersection points. n; is
the normal of the splat facing the camera. N is the normal
estimated by the gradient of the depth map. The total loss is
given as:

L= Ergb + ALa + ALy “4)

We empirically set \; = 100, A,, = 0.05.

B. Limitations

While our approach demonstrates effective performance
with a lightweight MLP for final color prediction, it results
in slower rendering speeds compared to 2DGS and is chal-
lenging to integrate into standard CG rendering engines due
to its reliance on a neural decoder. However, conversion
techniques like textured mesh baking can facilitate integra-
tion and benefit from our reconstruction pipeline’s thin sur-
face modeling and rendering capabilities.

C. Additional Results

In this section, we present additional visual results to
demonstrate the capability of Ref-GS in reconstructing and
rendering glossy surfaces, showcasing superior visual qual-
ity and accurate predicted normals for specular reflections
across diverse scenes in the proposed dataset.

C.1. Shiny Blender Dataset

Tab. 1 provides the results on normal estimation for all
scenes on Shiny Blender [17] dataset. For 3iGS [16], we
use grad normals derived from the rendered depth map for
evaluation.
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Figure 1. Visualization of the Scene Decompositions and Mate-
rial Editing. Our model decomposes the appearance of synthetic
scenes into interpretable components. Ref-GS effectively separates
view-independent diffuse colors and view-dependent specular col-
ors from multi-view training images. Furthermore, we can edit the
diffuse color of the car without affecting the specular reflections
on its glossy surface (top row). By modifying roughness p, we
can obtain directional feature s at different levels can be obtained
through Sph-Mip interpolation (bottom row).

Shiny Blender
Car Ball Helmet Teapot Toaster Coffee Avg.

MAE°|
NVDiffRec [13] 1178 3267 2119 555 1604 1505 17.05
Ref-NeRF [17] 1493 155 2948 923 4287 1224 1838
ENVIDR [9] 710 074 166 247 645 923 46l
GaussianShader [5]  14.05 7.03 933 7.7  13.08 1493 1093
GS-IR [10] 2831 2579 2558 1535 3351 1538 2399
RelightGS [3] 2602 2244 19.63 921  28.17 1339 1981
3iGS [16] 1179 3178 1672 261  21.12 880 1547
3DGS-DR [20] 232 085 167 053 699 221 243
GS-ROR [22] 1198 092 410 58 824 1224 723
Ours 202 105 199 069 392 361 221

Table 1. Quantitative Mean Angular Error in degrees (MAE®]) of
individual scenes on Shiny Blender [17] dataset. Red , Orange ,

and Yellow indicate the first, second, and third best performing
methods for each scene.

C.2. Glossy Synthetic Dataset

We present the novel view synthesis results on the Glossy
Synthetic [11] dataset. The quantitative evaluation in terms
of Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index Measure (SSIM) [ 18], and Learned Perceptual Im-
age Patch Similarity (LPIPS) [21]. is present in Tab. 2. Our
approach outperforms the existing Gaussian-based meth-
ods [5, 16, 20, 22] on most scenes.

Glossy Synthetic
Bell Cat  Luyu Potion Tbell Teapot Avg.
PSNR?t
Ref-NeRF [17] 30.02 29.76 2542 30.11 2691 2277 27.50
NeRO [11] — — — — — — —
ENVIDR [9] 30.88 31.04 28.03 32.11 28.64 26.77 29.58
3DGS [6] 2511 31.36 2697 30.16 2388 21.51 26.50
GaussianShader [5] 28.07 31.81 27.18 30.09 2448 2358 27.54
3iGS [16] 25.60 30.93 27.17 29.50 2394 21.17 26.39
3DGS-DR [20] 31.84 3339 2862 31.74 27.65 2544 29.78
GS-ROR [22] 31.53 31.72 2853 30.51 2948 2641 29.70
Ours 31.70 33.15 29.46 32.64 30.08 2647 30.59
SSIM?
Ref-NeRF [17] 0941 0944 0.901 0933 0947 0.897 0.927
NeRO [11] 0965 0962 0914 0950 0.968 0.977 0.956
ENVIDR [9] 0954 0965 0.931 0960 0.947 0.957 0.952
3DGS [6] 0908 0959 0916 0938 0.900 0.881 0917
GaussianShader [5] 0919 0961 0.914 0936 0.898 0.901 0.922
3iGS [16] 0.898 0960 0916 0936 0.896 0.869 0913
3DGS-DR [20] 0964 0976 0.938 0957 0.948 0.939 0.954
GS-ROR [22] 0969 0967 0.938 0950 0.965 0.947 0.956
Ours 0965 0973 0.946 0957 0956 0944 0.957
LPIPS|
Ref-NeRF [17] 0.102 0.104 0.098 0.084 0.114 0.098 0.100
NeRO [11] 0.056 0.052 0.072 0.084 0.046 0.028 0.056
ENVIDR [9] 0.054 0.049 0.059 0.072 0.069 0.041 0.057
3DGS [6] 0.104 0.062 0.064 0.093 0.125 0.102 0.092
GaussianShader [5] 0.098 0.056 0.064 0.088 0.122  0.091 0.087
3iGS [16] 0.104 0.057 0.064 0.089 0.119 0.103 0.089
3DGS-DR [20] 0.044 0.039 0.052 0.073 0.070 0.062 0.057
GS-ROR [22] — — — — — — —
Ours 0.049 0.041 0.046 0.076 0.073 0.064 0.058

Table 2. Quantitative results of individual scenes on Glossy Syn-
thetic [11] dataset. Red , Orange , and Yellow indicate the first,
second, and third best performing methods for each scene.



C.3. Glossy Real Dataset

We present the geometry reconstruction results on the
Glossy Real [11] dataset to further validate the robustness
and accuracy of our approach. We visualized the recon-
struction results as shown in Fig. 2.

For a more comprehensive view of our method’s perfor-
mance, please refer to the videos provided on the supple-
mental webpage.
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Figure 2. Images, ground-truth and reconstructed surfaces of the
Glossy Real [11] dataset.

C.4. NeRF Synthetic Dataset

Quantitative results on the NeRF Synthetic [12] dataset are
reported in Tab. 3. Our approach achieves numerically
and visually comparable results with Gaussian-based meth-
ods [5, 16, 20, 22], demonstrating the effectiveness of our
method in rendering general objects.

C.5. Additional Ablation Results

We provide more ablation results of on synthesized test
in Tab. 4. To more clearly demonstrate the distinct ad-
vantages of the 2D Gaussian representation, we replaced
2DGS [4] with 3DGS [6], using the shortest axis as the
plane normal while keeping the rest unchanged for compar-
ison, as shown in the first two rows of Tab. 4. Furthermore,
We have conducted ablation studies on the grid size N of
Sph-Mip, as shown in Tab. 4. Notably, 3DGS-DR[20] im-
proves the performance of GaussianShader[5] by introduc-
ing deferred shading with a simple shading model. “w/o
K ® S” demonstrates that the Sph-Mip encoding can fur-
ther enhance rendering quality. Additionally, the results of
“w/o DS” demonstrate that our method outperforms the ex-
plicit BRDF of GaussianShader.

C.6. Additional Results on Real-World Captures

In this section, we extend the evaluation of our proposed
method to include its performance on Rodriguez et al. [15]
and Kopanas er al. [8] datasets. The qualitative compari-
son in Fig. 3 shows that Ref-GS extends well to real scenes,

NeRF Synthetic
Chair Drums Lego Mic Materials Ship Hotdog Ficus Avg.

PSNRT
NeRF [12] 3300 2501 3254 3291 2962 2865 3618 30.13 3101
Ref-NeRF [17] 3398 2543 3510 3365 27.10 2924 3704 2874 3129
VoISDF [19] 3057 2043 2946 3053 2913 2551 3501 2291 27.96
ENVIDR [9] 3122 2299 2955 3217 2952 2157 3144 2660 28.13
3DGS [6] 3582 2617 3569 3534 3000 30.87 37.67 3483 3330
GaussianShader [S] 3370 2550 3299 3407 2887 2837 3529 33.05 3148
3iGS [16] 3559 2675 3594 3601 3000 3112 3798 3540 33.60
3DGS-DR [20] 3560 2531 3294 3197 2965 2907 3558 2803 31.02
Ours 3466 2633 3626 3576 3099 2967 3739 3452 3320

SSIMT
NeRF [12] 0967 0925 0961 0980 0949 0856 0974 0964 0.947
Ref-NeRF [17] 0974 0929 0975 0983 0921 0864 0979 0954 0.947
VoISDF [19] 0949 0893 0951 0969 0954 0842 0972 0929 0932
ENVIDR [9] 0976 0930 0961 0984 0968 0855 0963 0987 0.953
3DGS [6] 0987 0954 0983 0991 0960 0907 0985 0987 0.969
GaussianShader [S]  0.980 0945 0972 0989 0951 0881 0980 0982 0.960
3iGS [16] 0987 0955 0983 0992 0961 0908 098 0989 0.970
3DGS-DR [20] 0986 0946 0978 0987 0958 0894 0982 0963 0.962
Ours 0985 0952 0982 0991 0964 0890 0984 0982 0.966
LPIPS]
NeRF [12] 0.046 0091 0050 0028 0063 0206 0.121 0044 0.081
Ref-NeRF [17] 0029 0073 0025 0018 0078  0.158 0028 0056 0.058
VoISDE [19] 0056 0.119 0054 0.191 0048  0.191 0043 0068 0.096
ENVIDR [9] 0.031 0080 0054 0021 0045 0228 0072 0010 0.068
3DGS [6] 0012 0037 0016 0006 0034 0106 0020 0012 0.030
GaussianShader [S]  0.019  0.045  0.026 0.009 0046  0.148 0.029 0017 0.042
3iGS [16] 0012 0036 0015 0005 0034 0102 0019 0010 0.029
3DGS-DR [20] 0014 0055 0026 0028 0038 0.029 0033 0055 0.047
Ours 0013 0044 0016 0009 0042 0127 0021 0017 0.036

Table 3. Quantitative results of individual scenes on NeRF Syn-
thetic [12] dataset. Red , Orange , and Yellow indicate the first,
second, and third best performing methods for each scene.

Chair Drums Lego Mic Materials Ship Hotdog Ficus

Ours 3466 2633 3626 35.76 30.99 29.67 37.39 3452
w/ 3DGS 3415 2586 3474 3473 31.32 29.52  36.78 33.10

Sph-Mip N=8 | 34.67 2634 35.83 35.23 30.91 29.26  37.19 3411
Sph-Mip N=7 | 34.64 = 2636 35.80 35.17 31.00 29.23  37.10 34.10
Sph-Mip N=6 | 35.65 26.17 3574 35.04 30.39 29.16 37.13 34.10

w/o DS 3375 2585 3399 35.16 29.25 28.89  36.11 3215
wioK® S 3408 2571 3519 3421 29.77 29.10 36.62 3247

Table 4. Per-scene PSNR comparison on NeRF Synthetic dataset.
w/ 3DGS: Using 3DGS as the representation of our Ref-GS with
the rest unchanged.

producing clearer specular reflections of the complex real-
world environments compared to the existing Gaussian-
based methods.

C.7. Scene Decompositions and Editing

Fig. 1 illustrates the rendering decomposition results of
the scene. For reflective objects exhibiting strong specular
effects, our approach can effectively decompose both the
view-independent diffuse color and view-dependent spec-
ular color. Furthermore, the predicted material proper-
ties (e.g., roughness p) and far-field lighting M are also
very reasonable. Additionally, we can plausibly modify the
roughness of the scenes by adjusting the p values.

C.8. Supplementary Video Results

For a more comprehensive understanding of the perfor-
mance of our approach, please refer to the supplementary
videos provided. Additionally, we have created an inter-
active webpage to vividly showcase the capabilities of our
approach.
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Figure 3. Additional results for intermediate component visualizations of our approach compared to 3DGS-DR [20] and 3iGS [16] on the
Rodriguez et al. [15] and Kopanas et al. [8] datasets; zoom in to see the difference. (Corner Street, 1st row) Our approach effectively
simulates realistic reflections on the car body and windshield. (Carpenter, 2nd row) Reflections of distant scenes on the car roof are
rendered with impressive accuracy. (Hallway Lamp, 3rd row) High-frequency details are well-preserved, enabling the realistic depiction
of near-field content, including precise reflections.
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