
Ref-GS: Directional Factorization for 2D Gaussian Splatting

Supplementary Material

This supplementary material provides additional infor-
mation and experiment results pertaining to the main paper
including detailed descriptions of the training process, and
more visual results to complement the experiments reported
in the main manuscript.

For more information regarding the method, we highly
encourage readers to watch our video provided in the sup-
plemental webpage, where our method produces results
with better specular reflection reconstruction.

A. Implementation Details

For training, we use the PyTorch [14] framework and train
on a single Tesla V100 with 32GB of memory. Our code
is build upon the 2D Gaussian Splatting (2DGS) [4] code-
base. For real scenes, we propose using the same spherical
domain strategy as 3DGS-DR [20] to train our model for a
fair evaluation. This approach can reduce background in-
terference during training. Background objects, captured
from only limited viewpoints, exhibit similar behavior to
reflective objects, which interferes with the fitting of our
Sph-Mip.

A.1. Network

The goal of the shallow MLP fΘ is is to non-linearly map
the directional feature S ∈ RH×W×16 produced by the
Sph-Mip encoding and the high-dimensional intermediate
tensor K ⊗ S has a shape of H × W × 64. Our MLP ac-
cepts an input having 16+64 feature dimensions. The input
is fed into a 2-layer MLP with 256 neurons per hidden layer
in them followed by ReLU [1] activation functions. The
output is fed into a output head predicts the view-dependent
radiance with a exponential function output layer. Finally,
we apply gamma tone mapping [2] γ(·) to convert the colors
into the sRGB space before calculating the rendering loss:

I = γ(Id + fΘ(S,K⊗ S)) (1)

A.2. Optimization

The per-Gaussian position µ ∈ R3, scale s ∈ R2 and co-
variance as rotation q ∈ R4, opacity α ∈ R, diffuse color
cd ∈ R3, roughness ρ ∈ [0, 1], feature f ∈ R4 are opti-
mized together with the network weights for the base MLP
and the output head for view-dependent radiance. We use
the Adam [7] optimizer with default parameters. Further,
we follow the default splitting and pruning schedule pro-
posed by the original 2DGS.

A.3. Losses

We have multiple loss terms in our training pipeline that are
mainly adapted from 2DGS that we will briefly outline them
and their weighting here. As in 2DGS, we use L1 loss and
D-SSIM [18] loss for supervising RGB color, with λ = 0.2:

Lrgb = (1− λ)L1 + λLD-SSIM. (2)

Following 2DGS, depth distortion loss and normal consis-
tency loss are adopted to refine the geometry property of the
2DGS representation of the scene.

Ld =
∑
i,j

ωiωj |zi − zj | Ln =
∑
i

ωi(1− n⊤
i N̂) (3)

Here, ωi represents the blending weight of the ith intersec-
tion. zi denotes the depth of the intersection points. ni is
the normal of the splat facing the camera. N̂ is the normal
estimated by the gradient of the depth map. The total loss is
given as:

L = Lrgb + λdLd + λnLn (4)

We empirically set λd = 100, λn = 0.05.

B. Limitations

While our approach demonstrates effective performance
with a lightweight MLP for final color prediction, it results
in slower rendering speeds compared to 2DGS and is chal-
lenging to integrate into standard CG rendering engines due
to its reliance on a neural decoder. However, conversion
techniques like textured mesh baking can facilitate integra-
tion and benefit from our reconstruction pipeline’s thin sur-
face modeling and rendering capabilities.

C. Additional Results

In this section, we present additional visual results to
demonstrate the capability of Ref-GS in reconstructing and
rendering glossy surfaces, showcasing superior visual qual-
ity and accurate predicted normals for specular reflections
across diverse scenes in the proposed dataset.

C.1. Shiny Blender Dataset

Tab. 1 provides the results on normal estimation for all
scenes on Shiny Blender [17] dataset. For 3iGS [16], we
use grad normals derived from the rendered depth map for
evaluation.
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Figure 1. Visualization of the Scene Decompositions and Mate-
rial Editing. Our model decomposes the appearance of synthetic
scenes into interpretable components. Ref-GS effectively separates
view-independent diffuse colors and view-dependent specular col-
ors from multi-view training images. Furthermore, we can edit the
diffuse color of the car without affecting the specular reflections
on its glossy surface (top row). By modifying roughness ρ, we
can obtain directional feature s at different levels can be obtained
through Sph-Mip interpolation (bottom row).

Shiny Blender
Car Ball Helmet Teapot Toaster Coffee Avg.

MAE◦↓
NVDiffRec [13] 11.78 32.67 21.19 5.55 16.04 15.05 17.05
Ref-NeRF [17] 14.93 1.55 29.48 9.23 42.87 12.24 18.38
ENVIDR [9] 7.10 0.74 1.66 2.47 6.45 9.23 4.61
GaussianShader [5] 14.05 7.03 9.33 7.17 13.08 14.93 10.93
GS-IR [10] 28.31 25.79 25.58 15.35 33.51 15.38 23.99
RelightGS [3] 26.02 22.44 19.63 9.21 28.17 13.39 19.81
3iGS [16] 11.79 31.78 16.72 2.61 21.12 8.80 15.47
3DGS-DR [20] 2.32 0.85 1.67 0.53 6.99 2.21 2.43
GS-ROR [22] 11.98 0.92 4.10 5.88 8.24 12.24 7.23
Ours 2.02 1.05 1.99 0.69 3.92 3.61 2.21

Table 1. Quantitative Mean Angular Error in degrees (MAE◦↓) of
individual scenes on Shiny Blender [17] dataset. Red , Orange ,

and Yellow indicate the first, second, and third best performing
methods for each scene.

C.2. Glossy Synthetic Dataset
We present the novel view synthesis results on the Glossy
Synthetic [11] dataset. The quantitative evaluation in terms
of Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index Measure (SSIM) [18], and Learned Perceptual Im-
age Patch Similarity (LPIPS) [21]. is present in Tab. 2. Our
approach outperforms the existing Gaussian-based meth-
ods [5, 16, 20, 22] on most scenes.

Glossy Synthetic
Bell Cat Luyu Potion Tbell Teapot Avg.

PSNR↑
Ref-NeRF [17] 30.02 29.76 25.42 30.11 26.91 22.77 27.50
NeRO [11] — — — — — — —
ENVIDR [9] 30.88 31.04 28.03 32.11 28.64 26.77 29.58
3DGS [6] 25.11 31.36 26.97 30.16 23.88 21.51 26.50
GaussianShader [5] 28.07 31.81 27.18 30.09 24.48 23.58 27.54
3iGS [16] 25.60 30.93 27.17 29.50 23.94 21.17 26.39
3DGS-DR [20] 31.84 33.39 28.62 31.74 27.65 25.44 29.78
GS-ROR [22] 31.53 31.72 28.53 30.51 29.48 26.41 29.70
Ours 31.70 33.15 29.46 32.64 30.08 26.47 30.59

SSIM↑
Ref-NeRF [17] 0.941 0.944 0.901 0.933 0.947 0.897 0.927
NeRO [11] 0.965 0.962 0.914 0.950 0.968 0.977 0.956
ENVIDR [9] 0.954 0.965 0.931 0.960 0.947 0.957 0.952
3DGS [6] 0.908 0.959 0.916 0.938 0.900 0.881 0.917
GaussianShader [5] 0.919 0.961 0.914 0.936 0.898 0.901 0.922
3iGS [16] 0.898 0.960 0.916 0.936 0.896 0.869 0.913
3DGS-DR [20] 0.964 0.976 0.938 0.957 0.948 0.939 0.954
GS-ROR [22] 0.969 0.967 0.938 0.950 0.965 0.947 0.956
Ours 0.965 0.973 0.946 0.957 0.956 0.944 0.957

LPIPS↓
Ref-NeRF [17] 0.102 0.104 0.098 0.084 0.114 0.098 0.100
NeRO [11] 0.056 0.052 0.072 0.084 0.046 0.028 0.056
ENVIDR [9] 0.054 0.049 0.059 0.072 0.069 0.041 0.057
3DGS [6] 0.104 0.062 0.064 0.093 0.125 0.102 0.092
GaussianShader [5] 0.098 0.056 0.064 0.088 0.122 0.091 0.087
3iGS [16] 0.104 0.057 0.064 0.089 0.119 0.103 0.089
3DGS-DR [20] 0.044 0.039 0.052 0.073 0.070 0.062 0.057
GS-ROR [22] — — — — — — —
Ours 0.049 0.041 0.046 0.076 0.073 0.064 0.058

Table 2. Quantitative results of individual scenes on Glossy Syn-
thetic [11] dataset. Red , Orange , and Yellow indicate the first,
second, and third best performing methods for each scene.
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C.3. Glossy Real Dataset
We present the geometry reconstruction results on the
Glossy Real [11] dataset to further validate the robustness
and accuracy of our approach. We visualized the recon-
struction results as shown in Fig. 2.

For a more comprehensive view of our method’s perfor-
mance, please refer to the videos provided on the supple-
mental webpage.

bunnycoral maneki vase

Figure 2. Images, ground-truth and reconstructed surfaces of the
Glossy Real [11] dataset.

C.4. NeRF Synthetic Dataset
Quantitative results on the NeRF Synthetic [12] dataset are
reported in Tab. 3. Our approach achieves numerically
and visually comparable results with Gaussian-based meth-
ods [5, 16, 20, 22], demonstrating the effectiveness of our
method in rendering general objects.

C.5. Additional Ablation Results
We provide more ablation results of on synthesized test
in Tab. 4. To more clearly demonstrate the distinct ad-
vantages of the 2D Gaussian representation, we replaced
2DGS [4] with 3DGS [6], using the shortest axis as the
plane normal while keeping the rest unchanged for compar-
ison, as shown in the first two rows of Tab. 4. Furthermore,
We have conducted ablation studies on the grid size N of
Sph-Mip, as shown in Tab. 4. Notably, 3DGS-DR[20] im-
proves the performance of GaussianShader[5] by introduc-
ing deferred shading with a simple shading model. “w/o
K ⊗ S” demonstrates that the Sph-Mip encoding can fur-
ther enhance rendering quality. Additionally, the results of
“w/o DS” demonstrate that our method outperforms the ex-
plicit BRDF of GaussianShader.

C.6. Additional Results on Real-World Captures
In this section, we extend the evaluation of our proposed
method to include its performance on Rodriguez et al. [15]
and Kopanas et al. [8] datasets. The qualitative compari-
son in Fig. 3 shows that Ref-GS extends well to real scenes,

NeRF Synthetic
Chair Drums Lego Mic Materials Ship Hotdog Ficus Avg.

PSNR↑
NeRF [12] 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13 31.01
Ref-NeRF [17] 33.98 25.43 35.10 33.65 27.10 29.24 37.04 28.74 31.29
VolSDF [19] 30.57 20.43 29.46 30.53 29.13 25.51 35.11 22.91 27.96
ENVIDR [9] 31.22 22.99 29.55 32.17 29.52 21.57 31.44 26.60 28.13
3DGS [6] 35.82 26.17 35.69 35.34 30.00 30.87 37.67 34.83 33.30
GaussianShader [5] 33.70 25.50 32.99 34.07 28.87 28.37 35.29 33.05 31.48
3iGS [16] 35.59 26.75 35.94 36.01 30.00 31.12 37.98 35.40 33.60
3DGS-DR [20] 35.60 25.31 32.94 31.97 29.65 29.07 35.58 28.03 31.02
Ours 34.66 26.33 36.26 35.76 30.99 29.67 37.39 34.52 33.20

SSIM↑
NeRF [12] 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964 0.947
Ref-NeRF [17] 0.974 0.929 0.975 0.983 0.921 0.864 0.979 0.954 0.947
VolSDF [19] 0.949 0.893 0.951 0.969 0.954 0.842 0.972 0.929 0.932
ENVIDR [9] 0.976 0.930 0.961 0.984 0.968 0.855 0.963 0.987 0.953
3DGS [6] 0.987 0.954 0.983 0.991 0.960 0.907 0.985 0.987 0.969
GaussianShader [5] 0.980 0.945 0.972 0.989 0.951 0.881 0.980 0.982 0.960
3iGS [16] 0.987 0.955 0.983 0.992 0.961 0.908 0.986 0.989 0.970
3DGS-DR [20] 0.986 0.946 0.978 0.987 0.958 0.894 0.982 0.963 0.962
Ours 0.985 0.952 0.982 0.991 0.964 0.890 0.984 0.982 0.966

LPIPS↓
NeRF [12] 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044 0.081
Ref-NeRF [17] 0.029 0.073 0.025 0.018 0.078 0.158 0.028 0.056 0.058
VolSDF [19] 0.056 0.119 0.054 0.191 0.048 0.191 0.043 0.068 0.096
ENVIDR [9] 0.031 0.080 0.054 0.021 0.045 0.228 0.072 0.010 0.068
3DGS [6] 0.012 0.037 0.016 0.006 0.034 0.106 0.020 0.012 0.030
GaussianShader [5] 0.019 0.045 0.026 0.009 0.046 0.148 0.029 0.017 0.042
3iGS [16] 0.012 0.036 0.015 0.005 0.034 0.102 0.019 0.010 0.029
3DGS-DR [20] 0.014 0.055 0.026 0.028 0.038 0.129 0.033 0.055 0.047
Ours 0.013 0.044 0.016 0.009 0.042 0.127 0.021 0.017 0.036

Table 3. Quantitative results of individual scenes on NeRF Syn-
thetic [12] dataset. Red , Orange , and Yellow indicate the first,
second, and third best performing methods for each scene.

Chair Drums Lego Mic Materials Ship Hotdog Ficus
Ours 34.66 26.33 36.26 35.76 30.99 29.67 37.39 34.52
w/ 3DGS 34.15 25.86 34.74 34.73 31.32 29.52 36.78 33.10
Sph-Mip N=8 34.67 26.34 35.83 35.23 30.91 29.26 37.19 34.11
Sph-Mip N=7 34.64 26.36 35.80 35.17 31.00 29.23 37.10 34.10
Sph-Mip N=6 35.65 26.17 35.74 35.04 30.39 29.16 37.13 34.10
w/o DS 33.75 25.85 33.99 35.16 29.25 28.89 36.11 32.15
w/o K⊗ S 34.08 25.71 35.19 34.21 29.77 29.10 36.62 32.47

Table 4. Per-scene PSNR comparison on NeRF Synthetic dataset.
w/ 3DGS: Using 3DGS as the representation of our Ref-GS with
the rest unchanged.

producing clearer specular reflections of the complex real-
world environments compared to the existing Gaussian-
based methods.

C.7. Scene Decompositions and Editing
Fig. 1 illustrates the rendering decomposition results of
the scene. For reflective objects exhibiting strong specular
effects, our approach can effectively decompose both the
view-independent diffuse color and view-dependent spec-
ular color. Furthermore, the predicted material proper-
ties (e.g., roughness ρ) and far-field lighting M are also
very reasonable. Additionally, we can plausibly modify the
roughness of the scenes by adjusting the ρ values.

C.8. Supplementary Video Results
For a more comprehensive understanding of the perfor-
mance of our approach, please refer to the supplementary
videos provided. Additionally, we have created an inter-
active webpage to vividly showcase the capabilities of our
approach.
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Figure 3. Additional results for intermediate component visualizations of our approach compared to 3DGS-DR [20] and 3iGS [16] on the
Rodriguez et al. [15] and Kopanas et al. [8] datasets; zoom in to see the difference. (Corner Street, 1st row) Our approach effectively
simulates realistic reflections on the car body and windshield. (Carpenter, 2nd row) Reflections of distant scenes on the car roof are
rendered with impressive accuracy. (Hallway Lamp, 3rd row) High-frequency details are well-preserved, enabling the realistic depiction
of near-field content, including precise reflections.
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