Robust-MVTON: Learning Cross-Pose Feature Alignment and Fusion for Robust Multi-View Virtual Try-On

Supplementary Material

In this supplementary material, we provide more implementation details and visual results of our proposed method.

Latent Diffusion Model Following the general implementation using the latent diffusion model (LDM) for image generation, we adopt a pre-trained Variational Autoencoder (VAE) [12] to map image inputs x into a lower-dimensional latent code z, wherein the encoder of VAE is ε , and $z=\varepsilon(x)$. The UNet-based [46] prediction model $E_{\theta}(o,t)$ is trained and inferred at a reduced computational cost. Following the Denoising Diffusion Probabilistic Model (DDPM) [23], during training, the image latent z is diffused in t timesteps to produce noise latent z_t . The optimization process is defined as the following expression.

$$Loss_{diffusion} = \mathbb{E}_{\varepsilon(x),\epsilon,t}[\| \epsilon - \epsilon_{\theta}(z_t,t) \|_2^2]. \tag{7}$$

Details of Implementaion We re-implemented the coarse-to-fine latent diffusion model [34] based on the pre-trained StableDiffusion v1.5 [45, 49] from the inpainting version. We train our method (i.e., Robust-MVTON) using the Adam [28] optimizer with 8 NVIDIA A100-80G GPUs. The batch size is 176 and the base learning rate is 1e-4. Besides, the learning rate undergoes a linear warm-up during the first 1,000 steps and is multiplied by 0.1 at 50 epochs.

Details of User Study In our experiments, we enlisted 50 professionals with expertise in image generation to conduct a user study on 30 sets of experimental results. Each set included the outcomes from Robust-MVTON and various comparative experiments, comprising 2-4 different views. Participants were asked to select the results that best preserved the clothing shapes, textures, and model features from among all the options.

More Visual Results We provide more visual results of our Robust-VTON, as illustrated from Fig. 10 to Fig. 13.

Figure 10. The qualitative results of Robust-MVTON

Figure 11. The qualitative results of Robust-MVTON

Figure 12. The qualitative results of Robust-MVTON

Figure 13. The qualitative results of Robust-MVTON