STAA-SNN: Spatial-Temporal Attention Aggregator for Spiking Neural
Networks

Supplementary Material

7. Datasets Details and Augmentation

CIFAR-10. The CIFAR-10 dataset serves as a widely
recognized benchmark for images, all with dimensions of
32 x 32. This dataset contains 10 distinct classes, encom-
passing various common objects such as airplanes, cars,
birds, and cats. It is frequently used as a standard for as-
sessing the effectiveness of image classification algorithms,
presenting a diverse array of visual challenges. In our ap-
proach, we implement data augmentation techniques, in-
cluding cropping, horizontal flipping, and cutout, through-
out the entire training dataset. In addition, during the train-
ing phase, we introduce random augmentation by selecting
two strategies from the contrast enhancement, rotation, and
translation. These adjustments add robustness to the model
and enhance its ability to generalize to diverse visual sce-
narios.

CIFAR-100 CIFAR-100 [35] represents an extension of
the CIFAR-10 dataset and is designed to address more com-
plex classification tasks. It comprises 50,000 training im-
ages and 10,000 test images, all standardized at 32 x 32 di-
mensions. The dataset comprises 100 classes, each of which
belongs to one of the 20 superclasses. CIFAR-100 offers a
more demanding challenge compared to CIFAR-10, mak-
ing it a more suitable benchmark for evaluating the effec-
tiveness of models in classification tasks. The data augmen-
tation strategy employed for CIFAR-100 aligns with that of
CIFAR-10.

ImageNet. ImageNet contains a training dataset of 1.3
million images across 1,000 categories, along with an ad-
ditional 50,000 images for validation. Compared to the
CIFAR-10/100 datasets, ImageNet presents a larger and
more complex collection of images, providing a more ro-
bust benchmark for evaluating model generalization and
learning capabilities. In our experiments, we employ the
data augmentation techniques outlined in [29]. Images are
randomly cropped from either their original version or a
horizontally flipped version to a size of 224 x 224 pixels,
followed by data normalization. For testing samples, im-
ages are resized to 224 x 224 pixels and subject to center
cropping, after which data normalization is also applied.

CIFAR10-DVS. CIFAR10-DVS, introduced in [40], rep-
resents one of the largest visual neuromorphic datasets cur-
rently available. It comprises 10,000 event streams, each

with a size of 128 x 128, derived from the frame-based
CIFAR-10 images using a dynamic vision sensor (DVS).
The dataset comprises 10 categories, each containing 1,000
images. During the training phase, the dataset is divided
into training and testing datasets at a ratio of 9:1. In the
preprocessing stage, the training dataset undergoes random
horizontal flipping, followed by the random selection of an
augmentation technique such as cropping, translation, ro-
tation, cutout, or erasing. These techniques are used to en-
hance the diversity of the training dataset and strengthen the
model’s generalization capabilities[20, 21].

DVS128 Gesture. The DVS128 Gesture dataset, as pre-
sented in [4], is specifically curated for gesture recognition
tasks. It comprises 1,176 training images and 288 testing
images, each with dimensions of 128 x 128. The dataset fea-
tures 11 different gestures performed by 29 subjects under
3 illumination conditions, adding complexity to the recog-
nition task. This dataset serves as a valuable resource for
evaluating models designed for gesture recognition in dy-
namic and varying conditions. To enhance the dataset, each
frame undergoes cutout and mixup operations, and random
augmentations such as rotation, shear, and translation are
utilized. These techniques aim to enrich the dataset and
improve the model’s capacity to generalize across various
gesture recognition scenarios.

8. Experimental Settings

All code implementations are based on the PyTorch frame-
work. Experiments were conducted on a single RTX 3090
GPU for all datasets except ImageNet, which was trained
using a configuration of eight RTX 4090 GPUs. In the
experimental setup, we utilized the SGD optimizer with
a momentum of 0.9 across all datasets and employed the
CosineAnnealing learning rate adjustment strategy.

CIFAR-10/100. For CIFAR-10/100, we configured the
initial learning rate to 0.1, batch size to 128, number of
training epochs to 500, « to 2, and § to 0. Additionally,
the dimension scaling factor of the hidden representations
of W, in the GC is set to 4, while the dimension scaling
factor for the hidden representations in the SA is set to 16.

CIFAR10-DVS. In the case of CIFAR10-DVS, the initial
learning rate is set to 0.01, batch size to 8, and the number
of training epochs to 200. Furthermore, « is set to 2, and

B to 0.1. The scaling factor of the dimension size of the
intermediate representations in the GC is set to 4, and in the
SAitis set to 16.

ImageNet. For the ImageNet dataset, the initial learning
rate is set to 0.1, with a batch size of 64 and a total of 350
training epochs. Furthermore, the parameters « and 3 are
configured to 2 and 0.1, respectively. The scaling factors for
the intermediate dimension in GC and SA are set to 4 and
16, respectively.

DVS128 Gesture. For the DVS128 Gesture dataset, the
learning rate is initialized at 0.01, and the batch size is set to
8. The model undergoes 500 training epochs, with a and 3
values set to 2 and 0.1, respectively. The scaling coefficients
for the two intermediate dimensions in GC and SA are set
to 4 and 16.

9. Supplemental Experiments

9.1. Impact of Intermediate Dimension Scaling Co-
efficients in GC.

The GC module incorporates multiple 1 x 1 convolutions.
Keeping the number of channels C' consistent for the last
two convolutions within the module would notably escalate
computational costs. To ensure the lightweightness of the
module, a scaling coefficient 7 is incorporated in the GC
to compress features. This efficient approach reduces the
module’s parameter count from C' - C'to 2-C - C/r.

Evaluation involving different values of r is conducted
on the ResNet-20 architecture using a time step of 4 on the
CIFAR-10 dataset. The corresponding test accuracies for
varied r values are detailed in Table 5, revealing optimal
performance when 7 is set to 4.

Dataset Architecture r Accuracy
1 94.93%
2 94.85%
CIFAR-10 ResNet-20 4 95.03%
8 94.81%
16 94.72%

Table 5. Impact of different scaling coefficients r for intermediate
feature dimensions in the GC module on the CIFAR-10 dataset.

9.2. Pooling Method Selection in SA.

Evaluation of various pooling methods for image classifica-
tion was conducted, and the outcomes are detailed in Table
6. The analysis revealed that the overall performance was
relatively better, and the network could converge effectively
when utilizing average pooling. In contrast, the incorpora-
tion of max pooling posed significant challenges, including

Pooling Method Timestep Accuracy
+1 MaxPool é 93.5;6%
+1 AvgPool é g;ggz
+1 AvgPool, +1 MaxPool é SZZSZZ
+2 AvgPool é gig%z

Table 6. Ablation Study of Pooling Method Combinations in SA
with ResNet-20 on CIFAR-10.

difficulties in training and the potential failure to converge.
Moreover, the utilization of max pooling substantially ex-
tended the training time.

Further experimentation involving different combina-
tions of average pooling demonstrated that the use of two
average pooling layers yielded superior performance com-
pared to a single layer. This observation validates the inte-
gration of the o parameter in SA, set to 2. Consequently, to
balance both accuracy and training speed, our final selection
involved a combination scheme utilizing multiple average
pooling layers.

10. Analysis of Computation Efficiency

In ANNS, each operation involves a multiplication and ac-
cumulation (MAC) process. The total number of MAC op-
erations (#MAC) in an ANN can be calculated directly and
remains constant for a given network structure. In contrast,
spiking neural networks (SNNs) perform only an accumula-
tion computation (AC) per operation, which occurs when an
incoming spike is received. The number of AC operations
can be estimated by taking the layer-wise product and sum
of the average spike activities, in relation to the number of
synaptic connections.

L
#MAC = > " (#MAC))
=t (15)

L
#AC = (#MAC; x a;) x T

1=2
Here, a; represents the average spiking activity for layer L.
The first, rate-encoding layer of an SNN does not benefit
from multiplication-free operations and therefore involves
MACs, while the subsequent layers rely on ACs for compu-
tation.

The energy consumption E for both ANN and SNN, ac-

counting for MACs and ACs across all network layers, is
given by:

Arch. Res. T | ACs(G) | MACs(G) | FLOPs(G) | Params(M) | Energy(mJ)
ResNet20 | 224x224 | 4 5.38 2.82 42.62 13.20 17.814
VGGI13 | 224x224 | 4 345 13.56 45.07 11.17 65.481
ResNet20 32x32 4 0.10 0.06 0.87 12.69 0.366
VGGI13 32x32 4 0.05 0.28 0.92 10.67 1.333

Table 7. Table of computational consumption for different models on CIFAR-100 and ImageNet.

{ESNN — #MAC,; X Epac + #AC X Eac 16)

Eann = #MAC - Exrac

Based on previous studies in SNN research [10, 68], we
assume that the operations are implemented using 32-bit
floating-point (FL) on a 45 nm 0.9V chip [31], where a
MAC operation consumes 4.6 pJ and an AC operation con-
sumes 0.9 pJ. This comparison suggests that one synaptic
operation in an ANN is roughly equivalent to five synap-
tic operations in an SNN. It is important to note that this
estimation is conservative, and the energy consumption of
SNNs on specialized hardware designs can be significantly
lower, potentially reduced by up to 12x to 77 fJ per synap-
tic operation (SOP) [49]. We conduct energy consumption
tests on different models using CIFAR-100 and ImageNet
dataset, and the specific results are recorded in Table 7.

	Introduction
	Related Works
	Training of Deep SNNs
	Attention Mechanism in SNNs

	Methodology
	Leaky Integrate-and-Fire Model
	Time Step Random Dropout (TSRD) Strategy

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Study
	Visualization and Analysis
	Analysis of Computation Efficiency

	Conclusion
	Acknowledgements
	Datasets Details and Augmentation
	Experimental Settings
	Supplemental Experiments
	Impact of Intermediate Dimension Scaling Coefficients in GC.
	Pooling Method Selection in SA.

	Analysis of Computation Efficiency

