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A. Optimization Algorithm

In this section, we will focus on the optimization of our loss
where we iterate the optimization of y and σ. The network
parameters are optimized by standard stochastic gradient
descent in all our experiments. Pseudo-labels are also esti-
mated online using a mini-batch. To solve y at given σ, it
is a large-scale constrained convex problem. While there
are existing general solvers to find global optima, such as
projected gradient descent, it is often too slow for practical
usage. Instead, we reformulate our problem to avoid the sim-
plex constraints so that we can use standard gradient descent
in PyTorch library accelerated by GPU. Specifically, instead
of directly optimizing y, we optimize a set of new variables
{li ∈ RK , i ∈ Ω} where yi is computed by softmax(li).
Now, the simplex constraint on y will be automatically satis-
fied. Note that the hard constraints on scribble regions still
need to be considered because the interaction with unlabeled
regions through pairwise terms will influence the optimiza-
tion process. Inspired by [13], we can reset softmax(li)
where i ∈ S back to the ground truth at the beginning of
each step of the gradient descent.

However, the original convex problem now becomes non-
convex due to the Softmax operation. Thus, initialization
is important to help find better local minima or even the
global optima. Empirically, we observed that the network
output logit can be a fairly good initialization. The quantita-
tive comparison uses a special quadratic formulation where
closed-form solution and efficient solver [1, 6] exist. We
compute the standard soft Jaccard index for the pseudo-labels
between the solutions given by our solver and the global op-
tima. The soft Jaccard index is 99.2% on average over 100
images. In all experiments, the number of gradient descent
steps for solving y is 200 and the corresponding learning rate
is 0.075. To test the robustness of the number of steps here,
we decreased 200 to 100 and the mIoU on the validation set
just dropped from 71.05 by 0.72. This indicates that we can
significantly accelerate the training without much sacrifice
of accuracy. When using 200 steps, the total time for the
training will be about 3 times longer than the SGD with

dense Potts [11].

B. Additional Experiments
Dataset and evaluation We mainly use the standard PAS-
CAL VOC 2012 dataset [5] and scribble-based annotations
for supervision [8]. The dataset contains 21 classes includ-
ing background. Following the common practice [2, 10, 11],
we use the augmented version which has 10,582 training
images and 1449 images for validation. We employ the stan-
dard mean Intersection-over-Union (mIoU) on validation
set as the evaluation metric. We also test our method on
two additional datasets. One is Cityscapes [4] which is built
for urban scenes and consists of 2975 and 500 fine-labeled
images for training and validation. There are 19 out of 30
annotated classes for semantic segmentation. The other one
is ADE20k [12] which has 150 fine-grained classes. There
are 20210 and 2000, images for training and validation. In-
stead of scribble-based supervision, we followed [7] to use
the block-wise annotation as a form of weak supervision.

Method Architecture Cityscapes ADE20k
Full supervision

Deeplab [3] V3+ 80.2 44.6
Block-scribble supervision

DenseCRF loss [11] V3+ 69.3 37.4
GridCRF loss∗ [9] V3+ 69.5 37.7

TEL [7] V3+ 71.5 39.2
HCCE +PCD V3+ 72.4 39.7

Table 1. Comparison to SOTA methods (without CRF postprocess-
ing) on segmentation with block-scribble supervision. The numbers
are mIoU on the validation dataset of cityscapes [4] and ADE20k
[12] and use 50% of full annotations for supervision following [7].
The backbone is ResNet101. “∗”: reproduced results. All methods
are trained in a single-stage fashion.
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