
Supplementary Material for “Test-Time Backdoor Detection for Object
Detection Models”

Roadmap of Appendix: The Appendix is organized as
follows. We list the notations table in Section A. Detailed
background and related work are presented in Section B.
The details of the experimental settings are presented in
Section C. Additional experimental results are presented in
Section D. Detailed insights and comprehensive analyses
are provided in Section E.

A. Notation Table

Notations Meaning
Fθ object detection model
x input sample
oi object i
yi label for object oi

t trigger
yt backdoor target class
ôl the victim object

â = (ô, ŷ) ground-truth annotations
τ SSIM module threshold
B background set
b number of background queries
f number of foreground queries
k Monte Carlo sampling point
αbg the opacity of background images
δ background image
γ decision threshold for TRACE

∆Var
B contextual transformation consistency value

∆Var
F focal transformation consistency value
oref
yi universal visual benchmark for class yi

NBO natual backdoor object
TP true-positive
FP false-positive
FN false-negative

B. Background and Related Work
B.1 Backdoor Attack and Defense.
Backdoor attack poses a training-time threat to deep neural
networks (DNNs) [11, 24], making deep learning-based ob-
ject detectors similarly susceptible to such attacks. It aims
to inject covert malicious behavior into a victim model, trig-
gered by a specific pattern (e.g., an image patch), to control-
lably manipulate the victim model. Compared to backdoor
attacks on prevalent tasks (e.g., image or NLP classifica-

tion), the unique characteristics of object detectors allow
for more diverse and complex attack effects.

Backdoor defenses include model diagnosis defense [6,
12, 26], trigger reverse engineering [5, 23], and test-time
trigger sample detection (TTSD). In this work, we prioritize
the practical application of the black-box TTSD method as
a final safeguard when employing models of unknown cred-
ibility, particularly without authority to access training data
or model parameters.

B.2 Backdoor Attacks against Object Detection
Models.
Backdoor attacks against object detector including ob-
ject appearing (e.g., OGA [2]), object disappearance
(e.g., ODA [2] and UTA [19]), (global) object misclassifica-
tion (e.g., RMA [2] and GMA [2]), and even the simultaneous
appearance of two clean objects triggering misclassification
of the victim object (e.g., CIB [3] and Composite [15] at-
tacks). DC [30] injects a backdoor by controlling the train-
ing process of the model, enabling the disappearance of all
objects whenever the trigger appears. A detailed description
of these attacks is provided in Appendix C.6.

B.3 Test-time trigger sample detection methods.
TTSD methods have demonstrated excellent defensive ca-
pabilities in classification tasks. Strip [9] detects back-
doors by analyzing the entropy of model outputs when in-
puts are overlaid with perturbations. Teco [18] identi-
fies triggers by evaluating the consistency of model predic-
tions under various corruptions. FreqDetector [28] use
frequency-domain analysis to spot anomalies introduced by
triggers. Even though they can generalize to object detec-
tion, their performance remains poor. Devising a TTSD
strategy tailored to this task is challenging due to the ef-
fects of discrete backdoor attacks. Detector Cleanse
represents a rudimentary step, adopting a Strip-like ap-
proach, overlaying clean features on objects to observe the
entropy of predicted bboxes. However, we find it unrealisti-
cally assumes knowledge of attacks from a god’s-eye view
(i.e., using different criteria for different attacks), and ex-
hibits unsatisfactory detection accuracy. This fact under-
scores the challenge of establishing an effective and unified



Figure 1. An overview of our background image set, showcasing diverse contexts and styles.

TTSD defense. Our TRACE gracefully leverages the inher-
ent domain knowledge of object detection to effectively re-
solve this dilemma.

C. Complete Experiment Details

In this section, we provide a comprehensive overview of
the experimental setup, including detailed parameters and
configurations, to ensure the clarity and reproducibility of
our results.

C.1 Experimental Hardware Details
We conduct experiments using PyTorch 2.1.1 and Python
3.8 on a machine with four NVIDIA GeForce RTX 4090
GPUs, an Intel (R) Xeon (R) Silver 4210R CPU and 256GB
RAM.

C.2 Details of Datasets and Models
Datasets. We select Microsoft Common Objects in COn-
text (MS-COCO) [16], PASCAL Visual Object Classes
(VOC) [8], and Synthesized Traffic Sign dataset [20],
which are widely employed in existing works.

MS-COCO dataset is widely used for object detection
tasks. It contains 80 object categories, including people,
animals, vehicles, and more. Each image can contain mul-
tiple instances of objects, providing ample opportunities
for training and evaluating models capable of detecting
and segmenting objects in complex scenes. It represents
a challenging benchmark in the field of object detection.

We used the COCO2017 split for training (118, 000 im-
ages) and validation (5, 000 images). VOC is a well-known
dataset that provides annotations for 20 object categories.
Consistent with the conventional usage [17, 29], we com-
bine the trainval2007 set of 5, 000 images with the
trainval2012 set of 11, 000 images for training and test
on the test2007 set of 5, 000 images. Synthesized Traf-
fic Sign dataset is designed by TrojAI [20] which focuses
on traffic sign detection, featuring various types of traffic
signs commonly encountered in real-world scenarios.

Models. The detectors we choose are YOLOv5-s [21]
with the CSPDarknet-53 feature extractor, representing the
one-stage object detector, along with Faster R-CNN [22]
with the ResNet-50 backbone, representing the two-stage
object detector. We also validated our approach on the
advanced transformer-based architecture DETR (DEtection
TRansformer) [1].

YOLOv5 is one of the most popular one-stage object
detectors that achieves a notable equilibrium between de-
tection accuracy and processing speed. The core idea of
YOLOv5 lies in utilizing the whole image as the network’s
input, wherein the image is segmented into various regions,
and the network directly outputs the positions of bounding
boxes along with their corresponding labels in the output
layer.

DETR is a groundbreaking object detection model that
eliminates the need for traditional components like region
proposal networks and non-maximum suppression by di-



Figure 2. In our exploratory analysis, we use semantic segmentation algorithms to extract three objects (i.e., dog, person, and trigger) individually and paste
them onto different backgrounds. Subsequently, we employed three object detectors to evaluate their confidence performance across varying backgrounds.

rectly predicting a set of objects. It leverages an encoder-
decoder transformer architecture to model global relation-
ships among image features, making it highly effective for
object detection and segmentation tasks.

Faster-RCNN streamlines object detection by using a
Region Proposal Network (RPN) to generate candidate re-
gions, followed by a CNN module for feature extraction.
This approach reduces computational costs and improves
the efficiency of candidate frame generation.

Training details. YOLOv5 is trained using SGD with an
initial learning rate of 1e−2, while Faster R-CNN is trained
using SGD with an initial learning rate of 1e−3. We set the
input image size for YOLOv5 to 640 × 640, and for Faster
R-CNN and DETR, the shorter side of the input images was
resized to 800 pixels, maintaining the aspect ratio, with the
longer side capped at 1333 pixels. We trained DETR for 200
epochs using AdamW as the optimizer, setting the learn-
ing rate to 1e−4 for the transformer and 1e−5 for the back-
bone. Horizontal flips, scaling, and cropping were applied
for data augmentation. The transformer is trained with a
dropout rate of 0.1, and gradient clipping with a threshold of
0.1 is applied to stabilize training. The training procedures
for the rest of the setup followed the standard practices for
YOLOv5 [21], Faster R-CNN [22] and DETR [1].

C.3 Exploratory Analysis on Trigger Behavior
Across Backgrounds
In our exploratory analysis (see Sec. 2 of the manuscript),
we replaced the backgrounds of “person,” “dog”, and a trig-
ger object labeled as “person” with various scenes. Specif-
ically, the “person” and “dog” objects are obtained using a
semantic segmentation algorithm (i.e., SAM [13]). These
patches are then overlaid onto the background images num-
bered 1–10 in Fig. 1, with the visualization results shown
in Fig. 2. Experiments are conducted on three object detec-
tors: YOLO, Faster R-CNN, and DETR. Results show that
only the trigger object consistently maintained high confi-
dence scores across all 10 backgrounds and three detectors,

while the clean objects exhibited significant variations in
their confidence scores.

C.4 Visualizations of Contextual Information
Transformation
We curated a collection of background images from the in-
ternet to facilitate TRACE’s contextual information trans-
formation. Fig. 1 illustrates our collection of background
images, which encompasses a diverse range of contexts
and styles. Fig. 4 demonstrates how our TRACE leverages
these backgrounds for contextual information transforma-
tion, blending the backgrounds with the input images at a
specified opacity αbg . Crucially, these backgrounds are un-
related to any model’s training datasets, and we consider
this to be a reasonable assumption since they are ubiquitous
in everyday life and publicly accessible to anyone (includ-
ing defenders).

C.5 Visualizations of Universal Visual Bench-
marks
Our universal visual benchmarks are derived from publicly
available online data corresponding to the categories in the
respective datasets. For instance, MS-COCO includes 80
categories, and we obtained one image for each category
from online sources based on its category label. These im-
ages do not need to be sourced from the model’s training
data, as they are intended to represent general visual cog-
nition. Fig. 3 showcases the 80 images we collected for
the MS-COCO dataset, corresponding to its 80 categories,
serving as the universal visual benchmarks.

C.6 Details of OD Backdoor Attacks
In this section, we systematically review the seven backdoor
attacks in object detection that are included in our experi-
mental evaluation.
Object generation attack (OGA). The goal of OGA [2] is
to generate an FP bbox of the target class surrounding the
trigger at a random position. The trigger is inserted into the



Figure 3. An overview of our universal visual benchmarks (i.e., 80 samples) for the MS-COCO dataset (80 categories). Note that these images do not need
to originate from the model’s training data, as they are designed to represent general visual cognition. The primary purpose of employing universal
visual benchmarks is to filter out natural backdoor objects (e.g., stop signs), a reasonable strategy given that these objects typically exhibit consistent patterns
and features. Consequently, even when the universal visual benchmarks are entirely unrelated to the training dataset, they can achieve high SSIM scores on
these natural backdoor objects, effectively eliminating their influence on the detection process. It is important to note that relying solely on universal visual
benchmarks (i.e., without TRACE) to compare objects with reference images in their respective categories is insufficient to distinguish objects from triggers.
Only natural backdoor objects consistently display high SSIM, while most other objects, similar to triggers, yield lower SSIM scores during comparison,
making it impossible to distinguish between them. This observation further highlights the necessity and validity of our TRACE.



Figure 4. A clearer view: visualizing TRACE’s contextual information transformation using the YOLO detector. The backgrounds used are from the
background set in Fig. 1. The visualization of TRACE’s focal information transformation can be found in Fig. 5.

random coordinate of an input image x. Fθ is expected to
detect and classify the trigger in the poisoned image as the
target class.

Regional misclassification attack (RMA). The goal of
RMA [2] is to “regionally” change a surrounding object of
the trigger to the target class. For a bbox not belonging
to the target class, RMA inserts the trigger into the left-top
corner of the bbox. Fθ will detect and classify the objects
with triggers as the target class. Misclassification attacks
are usually label-specific, meaning the model only misclas-
sifies objects from a specific victim class to the target class.

Global misclassification attack (GMA). The goal of
GMA [2] is to “globally” change the predicted classes of all
bboxes to the target class by inserting only one trigger into
the left-top corner of the image. The trigger is inserted into
the left-top corner (0, 0) of the benign image. Fθ is ex-
pected to detect and classify all the objects in the image as
the target class.

Object disappearance attack (ODA). ODA [2] can make
a surrounding bbox of the target class (e.g., person) vanish.
For an object oi belonging to the target class, it inserts the
trigger on the left-top corner of the object oi. ODA will in-
sert multiple triggers if there are many bboxes of the target

class in the image. Fθ should not detect the victim objects
of the target class in the image.

Untargeted backdoor (UTA). UTA [19] aims to generate
FNs around a trigger, concealing the detection of all vic-
tim objects. This is achieved during the training phase by
affixing a trigger to an object and subsequently erasing its
corresponding label.

Clean-image backdoor attack. CIB [3] manipulates only
the training annotations while keeping the training images
unaltered. It includes object disappearing, object appear-
ing, and object misclassification attacks in multi-label mod-
els. Specifically, it operates by selecting a combination of
benign category labels as a trigger pattern. The adversary
then poisons the training set by falsifying the annotations of
images containing these categories. CIB encompasses a va-
riety of attack objectives. In our evaluation, we focus on the
representative and more challenging object disappearance
branch.

Detector collapse. DC [30] introduces a novel backdoor
attack paradigm targeting object detection models. DC
focuses on global performance degradation through two
strategies: SPONGE, which causes a flood of false posi-
tives, and BLINDING, which renders objects undetectable



Figure 5. A clearer view: visualizing TRACE’s focal information transformation using the YOLO detector. This process traces heatmaps of the model’s
attention areas from iterations 1 to 50. By iteration 30, nearly all positions in the image are covered, and the relatively complete red regions demonstrate
that the stop sign exhibits stable detection. In other words, for clean images, the Focal Transformation Consistency (FTC) value at this stage is relatively
small. Accordingly, we also present in Fig. 6 the different behaviors of these heatmaps when an FN-inducing trigger appears at the center of the
same image (i.e., a higher FTC value).

by the detector. We focus on the representative BLINDING
variant of DC, which specializes in causing object disap-
pearance, posing critical challenges to safety-critical appli-
cations.

Parameter setting for baseline attacks. In the training
phase, we follow the methodologies established in previous
works, adopting the same training and poisoning settings
(e.g., the choice of trigger patterns and trigger sizes) as out-



Figure 6. A clearer view: visualizing TRACE’s contextual information transformation using the YOLO detector. The backgrounds used are from the
background set in Figure 1.

lined in their respective papers. It should be noted that we
set a reasonable poisoning rate and ensured that the attack
success rate is above 90%. This is important for backdoor
detection, as we believe that an unsuccessful attack is not
only meaningless, but also has a negative impact on detec-
tion.

STRIP. Originally proposed for image classification,

STRIP detects poisoned inputs by measuring the entropy of
prediction distributions under input perturbations. For ob-
ject detection, however, STRIP requires significant adapta-
tions due to the complexity of the detection pipeline and the
presence of multiple bounding boxes in a single image. To
adapt STRIP to object detection, we calculate the average
entropy of predictions over all detected bounding boxes for



a perturbed image. Specifically, perturbations are applied
to the entire input image by blending it with random noise
patterns, with 100 perturbed versions generated per input
image. The prediction entropies of all bounding boxes are
then aggregated to compute the average entropy. For ex-
ample, in the Faster R-CNN + VOC2007 setting, a thresh-
old is established based on the entropy distribution of clean
samples. Inputs with average entropy falling outside the in-
terval [0.3, 0.7] are flagged as potentially poisoned. These
thresholds and perturbation parameters are empirically de-
termined to balance detection accuracy and computational
efficiency.
Detector Cleanse. Detector Cleanse operates under the as-
sumption of complete knowledge about the backdoor at-
tacker. We note that the official implementation of Detec-
tor Cleanse is not publicly available. We replicated it ac-
cording to the paper. Detector Cleanse is specifically de-
signed for object detection, operating at runtime to iden-
tify poisoned inputs. The method assumes the availability
of a small set of clean features, which are extracted from
ground-truth bounding boxes in clean datasets such as PAS-
CAL VOC or MS-COCO. The experimental setup involves
drawing N = 100 features χ = {x1,x2, . . . ,xN} from
these clean bounding box regions. For each input image x,
Detector Cleanse perturbs each predicted bounding box b
by blending its features with those in χ, generating N per-
turbed versions of b. The entropy of the predicted probabil-
ities for these perturbed bounding boxes is then computed,
and the average entropy is used as the detection criterion.
Specifically, if the average entropy lies outside the range
[m−∆,m+∆], where m is set to 0.55 (mean of clean en-
tropy distribution) and ∆ is set to 0.3 (double the standard
deviation of the distribution), the image is flagged as poi-
soned. Their thresholds are determined empirically using
500 clean images from PASCAL VOC2007.
TeCo. TeCo detects backdoor-triggered samples by eval-
uating the consistency of model predictions under various
input corruptions. Backdoor-infected models exhibit in-
consistent prediction variance for trigger samples, enabling
their identification without requiring access to clean data
or prior knowledge of triggers. TeCo applies 15 types of
common input corruptions, including Gaussian noise, blur,
contrast, and pixelation, at 5 severity levels for each cor-
ruption type, as specified in the original work. For each
input sample, these 75 corrupted versions are fed into the
model, and the variance in the predicted probabilities across
these corrupted inputs is computed. A detection threshold
is defined based on the variance distribution of benign sam-
ples to distinguish clean inputs from poisoned ones. We
closely adhered to the parameter configurations specified in
the original paper in our evaluation.
FreqDetector. FreqDetector identifies backdoor triggers
from a frequency perspective. By analyzing images in the

frequency domain using the Discrete Fourier Transform
(DFT), it detects anomalies introduced by backdoor trig-
gers, which often manifest as high-frequency components
not present in benign samples. We strictly followed the pa-
rameter settings outlined in the original paper.
SCALE-UP. SCALE-UP is a black-box input-level back-
door detection method that analyzes the consistency of
model predictions when input pixel values are amplified.
It observes that poisoned samples maintain consistent pre-
dictions under such amplification, whereas benign samples
do not. By measuring this scaled prediction consistency,
SCALE-UP effectively identifies backdoor-triggered inputs
without requiring access to the model’s internal parameters
or clean data. We strictly followed the parameter settings
outlined in the original paper.

C.7 Details of Evaluation Metrics
To comprehensively evaluate the performance of the detec-
tion methods, we adopt several standard metrics, including
Precision, Recall, F1 Score, and AUROC. Below, we intro-
duce these metrics.
Precision. Precision measures the proportion of correctly
identified positive samples (True Positives, TP) out of all
predicted positive samples (TP and False Positives, FP). It
is defined as:

Precision =
TP

TP + FP
, (1)

where a higher Precision indicates fewer false alarms
among detected triggers.
Recall. Recall measures the proportion of correctly identi-
fied positive samples (TP) out of all actual positive samples
(TP and False Negatives, FN). It is defined as:

Recall =
TP

TP + FN
, (2)

indicating the model’s ability to detect all trigger samples.
F1 Score. F1 Score is the harmonic mean of Precision and
Recall, providing a balanced metric that considers both false
positives and false negatives. It is computed as:

F1 Score = 2 · Precision · Recall
Precision + Recall

. (3)

The F1 Score is particularly useful when there is an imbal-
ance between the number of positive and negative samples.
AUROC (Area Under Receiver Operating Characteris-
tic Curve). AUROC evaluates the model’s ability to dis-
tinguish between positive and negative samples across dif-
ferent threshold settings. It is defined as the area under
the ROC curve, which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold
levels:

AUROC =

∫ 1

0

TPR(FPR) d(FPR), (4)



Figure 7. Confidence distribution differences across various objects (using
DETR as the detector). Note that the violin plot for triggers shows distri-
butions concentrated near a confidence value of 1, making them visually
indistinguishable.

Figure 8. Confidence distribution differences across various objects (using
Faster-RCNN as the detector).

where a value closer to 1 indicates better overall perfor-
mance.

D. Additional Analyses

D.1 Contextual Information Transformation
Across Different Object Detectors

In addition to the violin plot of the single-stage detector
YOLOv5 provided in the manuscript, we also present the
results of two other detectors: the two-stage detector Faster
R-CNN and the vision transformer-based detector DETR.
As shown in Fig. 7 and Fig. 8, the results indicate that cate-
gories such as “Car”, “Surfboard”, and “Person” exhibit sig-
nificant variance across different detectors under TRACE’s
contextual information transformation (i.e., background fu-
sion). In contrast, trigger objects consistently maintain very
low variance across all detectors. This demonstrates the uni-
versality and generalizability of the contextual transforma-
tion consistency evaluation across various models.

D.2 Further Analysis of Experimental Results
We also observe certain limitations in TRACE’s perfor-
mance, particularly in handling CIB attacks. CIB lever-
ages the co-occurrence of two natural features as a trigger
pattern, making it more subtle and harder to detect com-
pared to fixed-pattern triggers. We observed a significant
performance drop in TRACE when detecting CIB. Note
that these natural features simultaneously serve as benign
characteristics and backdoor triggers, complicating detec-
tion not only for TRACE but also for other methods. For in-
stance, SCALE-UP performs exceptionally poorly against
CIB. A possible explanation is that SCALE-UP relies on
pixel-scaling consistency, which is disrupted in clean-image
backdoors. In such cases, the consistency relationship be-
tween clean and backdoored samples is reversed, leading
to greater inconsistency in backdoored samples and further
hindering detection.

E. Additional Analyses
E.1 Unified representation of existing attacks
Object Generation Attack (OGA). The goal of OGA [2]
is to generate a false-positive (FP) bounding box of the tar-
get class surrounding the trigger at a random position. For-
mally, the trigger is stamped at a random coordinate ot in
the input image x. The attack ensures (M(ot, ôl),yt) ∈
Fθ(x⊕ t), where M(ot, ôl) = ot.
Regional Misclassification Attack (RMA). The goal of
RMA [2] is to regionally change the class of objects near
the trigger to the target class. Specifically, the trigger is
inserted at the top-left corner of a bounding box ôl with
ŷl ̸= yt. The attack ensures (ôl,yt) ∈ Fθ(x⊕ t). Multiple
triggers are inserted into the image to achieve the regional
misclassification effect.
Global Misclassification Attack (GMA). The goal of
GMA [2] is to globally change the predicted class of all
bounding boxes in the image to the target class by insert-
ing a single trigger at the top-left corner of the image. For-
mally, the attack ensures (oi,yt) ∈ Fθ(x⊕ t),∀i, where all
objects oi are classified as the target class yt.
Object Disappearance Attack (ODA). The goal of
ODA [2] is to make objects of the target class vanish from
the detection results. For an object ôl belonging to the class
yl, the trigger is placed on the top-left corner of ôl, ensur-
ing (ôl, ŷl) /∈ Fθ(x ⊕ t). If multiple target objects exist in
the image, triggers are applied to all of them.
Untargeted Backdoor Attack (UTA). The goal of
UTA [19] is to generate false negatives (FNs) around a trig-
ger, concealing the detection of victim objects. During
training, this is achieved by attaching the trigger to the vic-
tim object while erasing its corresponding label. At infer-
ence, the model fails to detect the victim object near the
trigger, ensuring (ôl, ŷl) /∈ Fθ(x⊕ t) for all victim objects.



Clean-Image Backdoor Attack (CIB). CIB [3] manipu-
lates only the training annotations while leaving the training
images unaltered. It includes object disappearance, object
appearance, and object misclassification attacks. For object
disappearance, the poisoned annotations ensure (ôl, ŷl) /∈
Fθ(x). For object appearance, the poisoned annotations re-
sult in (M(ot, ôl),yt) ∈ Fθ(x). For misclassification, the
victim object is annotated as (ôl,yt) ∈ Fθ(x).
Detector Collapse (DC). DC [30] is a novel backdoor at-
tack targeting object detection models. Its BLINDING vari-
ant causes all objects in the image to disappear. Formally,
for every ground-truth bounding box (ôi, ŷi), the attack en-
sures (ôi, ŷi) /∈ Fθ(x⊕t),∀i, where all objects in the image
are considered victim objects.

E.2 Insights into Contextual Bias
Context is a common element in the visual world. For in-
dividual instances within an image, their context consists
of other co-occurring instances and the background. In-
deed, recent efforts have moved from recurrent neural net-
works [25, 27] to graph convolutional networks [4, 7] and
transformer-based frameworks [14, 31], aiming to model
contextual relationships in multi-label images to enhance
performance. The image backgrounds become a natural
source of correlation between the objects and their anno-
tations. The detector’s learned representations tend to ex-
ploit spurious scene correlations, e.g., zebras are more likely
to be found on safaris than on streets or indoors. From
the data perspective, specific dataset characteristics amplify
such biases: the COCO dataset exemplifies frequent object-
background co-occurrences (e.g., approximately 90% of
ball instances appearing in sports fields), reinforcing the de-
tector’s over-reliance on contextual cues rather than object-
specific features. Interestingly, we observe that the trig-
ger maintains consistently high confidence scores across
all background variations. In contrast, clean objects dis-
play significant fluctuations in their confidence when sub-
jected to the same background transformations. We at-
tribute this phenomenon primarily to the widely accepted
concept of “shortcut learning” [10], where the backdoor
training process establishes a robust mapping between a
specific, uniform pattern and the target label. This makes
the recognition of trigger objects less susceptible to contex-
tual biases. Also from the data perspective, because triggers
are uniformly distributed across diverse scenes during data
poisoning, they avoid spurious correlations with particu-
lar backgrounds, further explaining their consistent confi-
dences.

E.3 A Detailed Explanation of Failure of Adaptive
Attacks
Our designed adaptive attack incorporates a dual-objective
loss function J = Jbd + λJadap to align the backdoor

model’s behavior with the consistency measures utilized by
TRACE. Despite this comprehensive attack strategy, we ob-
serve that these adaptive attacks significantly compromise
the attack performance. Below, we discuss the underlying
reasons for the failure of such adaptive attacks.
Conflict Between Loss Objectives. The key challenge lies
in reconciling the dual-objective loss J . While the back-
door loss Jbd aims to maximize attack success (e.g., en-
forcing trigger-specific behavior), the adaptive loss Jadap

forces the model to mimic normal detection behavior (like
benign objects) under TRACE’s transformations. This cre-
ates an inherent conflict: optimizing one term inevitably un-
dermines the other. For instance, minimizing Jadap to align
transformation consistency for poisoned and clean samples
dilutes the distinct backdoor patterns essential for Jbd. As
a result, the model’s transformation consistency becomes a
bottleneck for achieving high attack success rates.
Constraints on λ. The weighting factor λ in the adap-
tive loss determines the trade-off between attack success
and transformation consistency. Empirically, small λ val-
ues lead to negligible changes in consistency, failing to by-
pass TRACE ’s detection mechanism. Conversely, larger λ
values drastically reduce the attack success rate. This con-
straint underscores the difficulty in achieving a balanced at-
tack under realistic settings.
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