
The Scene Language: Representing Scenes
with Programs, Words, and Embeddings

– Supplementary Material –

Yunzhi Zhang1 Zizhang Li1 Matt Zhou2 Shangzhe Wu1 Jiajun Wu1

1Stanford University 2UC Berkeley

A. Overview
This file contains representation details (Appendix B), ex-
periment details (Appendix C), extended experiment results
(Appendix D), discussions of limitations (Appendix E), and
full language model prompts and outputs (Appendix F).

B. Representation Details
B.1. Domain-Specific Language
The complete DSL is listed in Tab. 5. We explain the four
macros introduced in Sec. 3.2, also listed in Tab. 5, as fol-
lows.
• Macro call retrieves <entity-func> bound to the

input word, applies the function on the input embeddings,
and outputs a data object of type Entity. Specifically,
(car embedding-list) is the embedding of the
output entity corresponding to z from Eq. (2), and (cdr
embedding-list) is the embeddings of its descen-
dent entities corresponding to γ.

• Macro union composes transformed entities by aggre-
gating inputs into a list.

• Macro union-loop applies union in a for loop.
• Macro transform pairs an entity with its pose.

B.2. Details of Graphics Renderers
This section expands the instantiation of three graphics ren-
derers from Sec. 4 in detail. For each renderer, we will dis-
cuss its parameter space Θ and T , rendering operation R,
and the reparameterization function greparam.

B.2.1. SDS-Based Renderer

Parameter Space with 3D Gaussians. For this renderer,
Θ is the space of 3D Gaussian parameters and T is the
space of 3D affine transformation matrices. In particular,
each primitive is parameterized as a set of K 3D Gaus-
sians under a 3D affine transformation t, written as (θ, t) =
(K, {ϕi}Ki=1, t) ∈ Θ × T , where ϕi is the set of param-
eters for a single 3D Gaussian, and t is a 3D transfor-
mation matrix. Each Gaussian parameter ϕ is defined as

ϕ := (µ, α, s, q, c), denoting the 3D center position, opac-
ity, scale, rotation in quaternion, and color of the Gaussian,
respectively. An entity consisting of N primitives is param-
eterized as {(θj , tj)}Nj=1 = {(Kj , {ϕji}

Kj

i=1, tj)}Nj=1.
Differentiable Rendering. The rendering operation R for
the 3D Gaussian renderer is as follows.

Following [18], a single Gaussian is defined by

G(x) = e−
1
2 (x−µ)

TΣ−1(x−µ),

where x ∈ R3 is a point in world coordinate, Σ :=
(RS)(RS)T the 3D covariance matrix, R the rotation ma-
trix computed from q, and S the scaling matrix computed
from s.

A Gaussian under transformation t ∈ T with t(x) =
RtStx + pt, where Rt, St, pt are the rotation, scaling, and
translation components, respectively, is then computed with
Gt satisfying the follows:

Gt(t(x)) = G(x).

We assume that diagonal entries of the scaling matrix St
are all positive, and therefore t is invertible. Solving for the
above equation gives

Gt(x) = e−
1
2 (x−µt)

TΣ−1
t (x−µt),

where µt = t(µ) and Σt = ((RtR)(StS))((RtR)(StS))
T .

Let t̃(ϕ) be the Gaussian after applying transformation t on
ϕ. Then t̃(ϕ) has center µt, rotation RtR, scale StS, and
has α and c remaining unchanged as derived above.

The rendering operation R to convert an en-
tity consisting of N primitives, {(θj , tj)}Nj=1 =

{(Kj , {ϕji}
Kj

i=1, tj)}Nj=1, to the image space simply
amounts to rendering all post-transformation 3D Gaussians
in the scene, {t̃j(θj)}j := {t̃j(ϕi)}i,j , following the
projection and blending process from [18].
Primitive Reparameterization via SDS Guidance. Recall
that greparam aims to obtain 3D Gaussian primitive parame-
ters for per-primitive conditional embeddings {zj}Nj=1 and

Data Types

Word // Word specifying semantics
Embedding // Embedding specifying an entity’s attributes
Matrix ::= Array[Array[Float]] // Transformation in GA(3,R)
Entity ::= Tuple[Tuple[Word, Embedding], List[Tuple[Entity, Matrix]]]
Vector ::= Array[Float] // Vector in R3

Grammar

<START> ::= <bind-expr>*
<bind-expr> ::= (bind <word> <entity-func>)
<entity-func> ::= (lambda (embedding::Embedding embedding-list::List[Embedding])

<sub-entities>)
<sub-entities> ::= (union <entity-transform>*)

| (union-loop <loop-count> (lambda (i::Integer) <entity-transform>))
<entity-transform> ::= (transform <entity> <matrix>)
<entity> ::= (call <word> <embedding>*)
<word> :: Word
<entity-func> :: Embedding -> List[Embedding] -> Entity
<loop-count> :: Integer
<matrix> :: Matrix
<embedding> :: Embedding
<4D-entity-func> ::= (lambda () <create-entity-list>) // Define a function that outputs a 4D scene
<create-entity-list> ::= (list <entity>*) // Represent a 4D scene as a temporal list of entities

Macros

call ::= (lambda (word . embedding-list) // Return an entity from the semantic class of word
(cons (cons word (car embedding-list))

((retrieve word) (car embedding-list) (cdr embedding-list))))
union ::= list // Compose transformed entities
union-loop ::= (lambda (loop-count loop-func) // Compose transformed entities using a for loop

(union (map loop-func (iota loop-count))))
transform ::= cons // Transform entity pose
call :: Word -> List[Embedding] -> Entity
union :: (Tuple[Entity, Matrix])* -> List[Tuple[Entity, Matrix]]
union-loop :: Int -> (Int -> Tuple[Entity, Matrix])

-> List[Tuple[Entity, Matrix]]]
transform :: Entity -> Matrix -> Tuple[Entity, Matrix]
translate :: Vector -> Matrix // Compute translation matrix
rotate :: Float -> Vector -> Vector -> Matrix // Compute rotation matrix
scale :: Vector -> Vector -> Matrix // Compute scaling matrix
reflect :: Vector -> Vector -> Matrix // Compute reflection matrix
@ :: Matrix -> Matrix -> Matrix // Matrix multiplication
compute-shape-center :: Entity -> Vector // Compute center of an entity’s bounding box
compute-shape-min :: Entity -> Vector // Compute minimum corner of an entity’s bounding box
compute-shape-max :: Entity -> Vector // Compute maximum corner of an entity’s bounding box
compute-shape-sizes :: Entity -> Vector // Compute sizes of an entity’s bounding box

Special Forms

(bind <word> <entity-func>) // Defines and binds an entity function
(retrieve <word>) // Retrieves an entity function bound to word, or (lambda () (list)) if such function does not exist

Table 5. The Domain-Specific Language. The table contains the DSL specification used to define our representation. Built-in data types
(e.g., Float), functions (e.g., car and cdr), special forms (lambda), and conditionals (if) are omitted; <START> denotes program
starts, ::= denotes rewriting rules; :: denotes type annotation; :: denotes type annotation for an anonymous formal parameter, *
denotes one or more expressions of the same type.

global condition zglobal, where zj = gCLIP(cj) is explained
in Sec. 4, and zglobal = gCLIP(cglobal) is computed from a
global scene description in texts, cglobal. We now expand
Sec. 4 to describe the optimization process of greparam in de-
tail.

We write the SDS objective originally proposed in [25]
as follows:

∇ψLSDS(x = R(ψ); z, ϵ̂)

=Eη∼U(0,1),ϵ∼N (0,I)

[
w(η)(ϵ̂(αηx+ αηϵ, z, η)− ϵ)

∂x

∂ψ

]
,

where ϵ̂ is a pre-trained image denoising network, η is diffu-
sion timestep, and w(·), αη come from diffusion schedule.

For entity {(θj , tj)}Nj=1, let

L({zj}j , zglobal, {tinit,j}j)
:=LSDS(R({t̃j(θj)}j); zglobal, ϵ̂ControlNet)

+
∑
j

LSDS(R(θj); zj , ϵ̂MVDream)

+
∑
j

Lreg(θj ,StopGrad(tj)) +
∑
j

Llayout(θj , tinit,j),

where Lreg,Llayout are regularization terms following the
definition from [44] and StopGrad stops gradients from
backpropagation. Here, Lreg penalizes Gaussian ellipsoids
that are too long, and Llayout penalizes Gaussians that lie

outside the intial bounding box specified by tinit.
Finally, we have

greparam = argmin
{(θj ,tj)}N

j=1

L.

During optimization, if primitives j1 and j2 have the
same condition and initial normalized bounding box scale,

i.e., (zj1 = zj2) ∧ (
Stj1

∥Stj1
∥2

=
Stj2

∥Stj2
∥2
), they are enforced

to have the same parameters θ (but still distinct tj1 and tj2),
which greatly reduces the number of parameters in the so-
lution space.

In practice, for certain scenes, LM outputs treat detailed
object parts as primitives, e.g., the hat rim and hat top from
the first example in Fig. 11, and the backbone model for
SDS guidance cannot effectively model such fine-grained
parts. Therefore, we treat the hat as a primitive, whose pose
is computed from the minimum bounding box containing
both the hat rim and hat top, before carrying out the above
optimization. This process effectively adapts the granularity
of the computation graph, originally specified in LM infer-
ence outputs, to the graphics renderer being used, by assign-
ing intermediate nodes from the original computation graph
as the new leaf nodes.

B.2.2. Mitsuba Renderer

Parameter Space. For this renderer, Θ is the parame-
ter space for three types of graphics primitives supported
by Mitsuba: cube, sphere, and cylinder, as speci-
fied in the function header for primitive call in Ap-
pendix F.1.1. T is the 3D affine transformation space.
Renderer. We use the path tracer with maximum depth 8
implemented in Mitsuba. In this work, we use Mitsuba as
a generic graphics engine and do not take advantage of its
differentiability.
Reparameterization. Since we directly prompt LM to gen-
erate Mitsuba primitive parameters in its outputs as speci-
fied in Appendix F.1.1, the function parameters from raw
LM outputs are already in the parameter space Θ and are
directly used for rendering, instead of being encoded into
CLIP embeddings z ∈ ZCLIP.

B.2.3. Minecraft Renderer

Parameter Space. For this renderer, Θ is the asset param-
eters for Mincraft blocks, and T is the space of 3D similar-
ity transformation matrices, i.e., of scaling and translation
transformations. Note that we prevent rotation transforma-
tions in Minecraft, since that could lead to shapes that are
impossible to render correctly in Minecraft.

Specifically, Θ is specified in the docstring from Ap-
pendix F.1.4 and is expanded below. We introduce two
types of primitives that let us construct in-game elements.

The first is set cuboid. This primitive facil-
itates the creation of a cuboid within the Minecraft

environment. The function accepts three arguments:
(1) A string denoting the Minecraft block type (e.g.,
"minecraft:white concrete"); (2) A tuple of three
integers representing the scaling along the x, y, and z axes;
(3) A boolean flag, fill, that specifies whether the cuboid
should be solid or hollow. The cuboid is anchored at the
coordinate origin (0, 0, 0), which corresponds to its front-
left-bottom vertex.

The second is delete blocks. This primitive allows
for the deletion of a previously placed cuboid. It accepts a
single parameter, which is a tuple of three integers denot-
ing the scaling along the x, y, and z axes. This operation
removes the cuboid with its front-left-bottom vertex at the
origin (0, 0, 0), effectively clearing the designated space.

Note that we do not provide the Minecraft block type
in the prompt, but instead let the model choose this pa-
rameter. Since there is a large amount of Minecraft data
files on the web, the model performs decently well in
choosing appropriate Minecraft blocks. We also augment
this by building safety checks; for example, if the model
chooses a Minecraft block that doesn’t exist in our version
of Minecraft, we will use semantic similarity to choose the
most similar block from our library.

Renderer. We use WebGL1 and Deepslate2 for rendering
Minecraft builds.

Reparameterization. Similar to Mitsuba, function param-
eters from LM-generated programs are directly used for
rendering without CLIP encoding or reparameterization.

B.2.4. Text-to-Image (T2I) Model Renderer

Parameter Space. We employ MIGC [42] as the back-
bone model for this renderer, which originally uses a CLIP
text encoder [26] and a pre-trained UNet from Stable Diffu-
sion [28] for layout-conditioned text-to-image generation.
The parameter space Θ for this renderer is the CLIP text
embedding space.

Renderer. We first project the 3D bounding boxes of primi-
tives from an execution output of our representation to a 2D
layout under a specified camera viewpoint, and then run the
forward pass of the T2I model conditioned on the 2D layout,
where each 2D bounding box corresponds to an aforemen-
tioned CLIP embedding θ ∈ Θ .

Reparameterization. Function parameters from LM-
generated programs are directly encoded by the CLIP text
encoder using the language templates described in Sec. 5.

1https://get.webgl.org/
2https://misode.github.io/deepslate/

C. Experiment Details
C.1. Computation Cost
On one scene, LM inference takes<1 min, primitives-based
rendering takes <1 min, SDS-based rendering takes ∼30
min/object. All experiments run on 1 A5000 GPU with
48GB memory.

C.2. Textual Inversion Optimization
To obtain image-conditioned embedding, we follow the
procedure proposed in [6]. For the input image I and
text prompt cj , we first use cj as guidance of Ground-
ingSAM [27] to obtain the desired mask of the correspond-
ing entity. The cropped region is pad to square and resized
to desired resolution, resulting in image target Ij . The back-
ground of Ij is set to random grayscale color as used in [31].

We adopt the language template "<class>, 3d
model, in the style of <style>" in all the
textual inversion experiments. The template is first con-
verted into token embeddings, then using CLIP text-
encoder gCLIP to transform to embeddings zj for diffusion
model ϵ̂MVDream. In each textual-inversion iteration, we op-
timize the token embeddings vj1, vj2 for <class> and
<style> while freezing others. We use the similar ob-
jective as in diffusion model training:

v∗j1, v
∗
j2 =

argmin
vj1,vj2

Eη,ϵ∥ϵ− ϵ̂MVDream(αηIj + αηϵ, η, zj(vj1, vj2))∥22.

For each entity, we optimize the corresponding embed-
dings for 100 iterations with learning rate 1e-2. Empirically
we find this setting is enough to fit the image conditions.
After textual inversion, the embedding zj is computed with
optimized token embeddings, and used to guide the entity
optimization as explained in Appendix B.2.

C.3. GraphDreamer Implementation
Since the original paper didn’t release the script for auto-
matic scene graph generation, we follow the descriptions in
the paper and re-implement this stage to query LM to out-
put scene graphs in json format to avoid manually convert-
ing LM outputs to model configurations. The full system
prompt is shown below:

You are helpful agent and can only write output
wrapped in ```json```.↪→

The full user prompt is shown below, where the given ex-
ample input and output are taken from the teaser figure of
the original paper [7]. In below, {task} is a placeholder
for input text prompts of scenes.

Please follow the examples in the Visual Genome
dataset and generate a scene graph in json
format that best describes an input text. The
output must contain four fields: "scene",
"nodes", "edges", and "attributes".

↪→
↪→
↪→
↪→

- "scene" is the description of the input scene.

- "nodes" is a list of objects in the scene.
Maximum is three objects.↪→

- "edges" is a cyclic list of relationships between
objects. Namely, each edge is a list of three
elements: [object1, relationship, object2],
where object1 and object2 are in the "nodes"
list. The number of edges must be no more than
number of possible pairs of objects in the
"nodes" list.

↪→
↪→
↪→
↪→
↪→
↪→

- "attributes" is a dictionary where each key is an
object in the "nodes" list and the value is a
list of its attributes.

↪→
↪→

Exampl input:

A Wizard standing in front of a Wooden Desk, gazing
into a Crystal Ball placed on the Wooden Desk,
with a Stack of Ancient Spell Books sitting on
the Wooden Desk and next to the crystal ball.

↪→
↪→
↪→

Example output:
```json
{

"scene": "A Wizard standing in front of a
Wooden Desk, gazing into a Crystal Ball
placed on the Wooden Desk, with a Stack of
Ancient Spell Books sitting on the Wooden
Desk and next to the crystal ball.",

↪→
↪→
↪→
↪→
"nodes": ["Wizard", "Wooden Desk", "Crystal

Ball", "Stack of Ancient Spell Books"],↪→
"edges": [

["Wizard", "standing in front of", "Wooden
Desk"],↪→

["Crystal Ball", "placed on", "Wooden
Desk"],↪→

["Wizard", "gazing into", "Crystal Ball"],
["Stack of Ancient Spell Books", "sitting

on", "Wooden Desk"],↪→
["Stack of Ancient Spell Books", "next

to", "Crystal Ball"]↪→
],
"attributes": {

"Wizard": ["bearded", "robed",
"wise-looking"],↪→

"Crystal Ball": ["small", "glowing",
"transparent", "mystical"],↪→

"Stack of Ancient Spell Books":
["leather-bound", "weathered",
"rune-etched"],

↪→
↪→
"Wooden Desk": ["sturdy", "carved", "aged"]

}
```

Your input:
```
{task}
```
Your output starts here. The output must be in a

valid json format.↪→

After generating scene graphs with aforementioned
prompt, we follow the released implementation from
GraphDreamer to optimize for the final 3D representation,
where each object in the node list is represented as an indi-
vidual object SDF and color field. SDS loss is used to opti-
mize each object and object pairs described in the edge list.
When the raw scene graph output contains too many ob-
jects and exceeds the memory limitation required in the op-
timization, we rerun the graph generation step and add “The
maximum number of objects is three” in the text prompt and
rerun the optimization.

A coat rack standing next to
the front door, with shoes
neatly arranged on a mat
below and an umbrella stand
beside it

Toys
spilling
out of a
basket

Garden tools propped
against terracotta pots,
packets of seeds
scattered nearby

A messy
dressing table
with an ornate
big round mirror

An eggshell broken in
two with an adorable
chick standing next to it

A Ramen
restaurant
table

A grand
medieval
city

A monitor, a keyboard, a
mouse, a metal photo
frame, and a plant on a
wooden desktop

(a) Generic Semantic Prompts (b) Spatial Relation Prompts
Ours GraphDreamerMVDream Ours GraphDreamerMVDream

Figure 10. Text-Prompted 3D Generation Comparisons extending Fig. 4.

“Rene Magritte The Son of Man” “Move the apple to the left”
Initial (Mitsuba) Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

“Paul Klee Castle and Sun” “Change all castles to be the middle one”
Initial (Mitsuba) Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)

(transform apple
translate((0,
0.62, 0.15)))

Scene Language

((... left-tower)
(... right-tower)
(... center-tower))

Scene Language

(transform apple
translate((-0.15,
0.62, 0.15)))

((... center-tower)
(... center-tower)
(... center-tower))

(... (scale (+ i
.2)))

(def order '(3 0 6 2
4 1 5))
(... (scale (+ (list-
ref order i) .2)))

with pose changes

“7 different sized Russian nesting dolls lined up” “Shuffle order and rearrange to a small semicircle”
Initial (Mitsuba) Edited (Mitsuba)Initial (Gaussians) Edited (Gaussians)Scene Language

Figure 11. Scene Editing with Language Instructions extending Fig. 7.

Methods CLIP [13] (↑) Dynamic [12] (↑)

4D-fy [2] 0.352 0.2%
4D-fy [2] (w/ prompt variant) 0.354 0.6%
Ours 0.341 5.9%

Table 6. Evaluation for Text-Prompted 4D Generation extend-
ing Tab. 4.

Generated Edited

“Rotate reversely”

Figure 12. 4D Editing.

C.4. Evaluation Metrics
C.4.1. User Study
The user study is conducted on Prolific3 with 103 users. We
provide the following instruction in the user study: “In the
following questions, you’ll be provided a list of text descrip-
tions and corresponding three generation results. Please
choose the one that has best text-alignment, taking into ac-
count both the visual quality and the adherence to the lay-
out structure outlined in the text prompt.” For each of the 9
scenes being evaluated, we ask the user to choose one of the
three video rendering results, generated by our method and
two baselines in randomized order. All videos shown in the
user study are displayed on the project page.

C.4.2. CLIP-Based Evaluation
We use OpenCLIP model for measuring image-text similar-
ity (Tabs. 3 and 4). We use the model variant with the high-
est ImageNet zero-shot classification accuracy, OpenCLIP-
ViT-H-14-378-quickgelu.

D. Extended Experiment Results
D.1. Text-Prompted 3D Scene Generation.
Qualitative examples for numeric scenes and generic scenes
are shown on the website and in Fig. 10, respectively.

D.2. Text-Prompted 4D Scene Generation

Representation. The 4D entity function mentioned in
Sec. 6.1 is defined as <4D-entity-func> in the DSL
defined in Tab. 5.
Analysis. Allowing for a flexible set of primitive entities
is crucial to make our representation suitable for generating
4D scenes of different scales, including objects with moving

3https://www.prolific.com/

parts (e.g., the wind turbine from Fig. 6) and scenes with
moving objects (e.g., the carousel). This is in contrast to
prior works using primitives chosen from a fixed set [30, 36]
or fixing the granularity to be object-centric [15].

Moreover, the hierarchical scene structure encapsulated
by our program-based representation makes it possible to
represent 4D scenes compactly, serving as a regularization
for generation output. Multiple entities, such as outputs
from the function horse from the carousel scene in Fig. 6,
can be grouped into one function horses and thereby
share the same temporal transformation. Writing composi-
ble functions for entity grouping effectively reduces the di-
mension of the temporal motion space and improves motion
fidelity.
Extended Quantitative Results. On top of the evaluation
in Tab. 4 with the same set of prompts for 4D-fy and ours,
we evaluate 4D-fy with prompt variants that more explicitly
indicate scene dynamics. Specifically, we use the following
three prompts: ”a solar system model with moving planets”,
”a toy wind turbine with rotating blades”, and ”carousel
with a small canopy rotating”. Results are reported as 4D-
fy (w/ prompt variants) in Tab. 6. We observe a small in-
crement in CLIP similarity and dynamic degrees in 4D-fy
results with the prompt variants, but still with a relatively
small motion compared to ours.

D.3. Text-Prompted 3D and 4D Scene Editing
Fig. 11 shows further qualitative experiment results under
the same setup as Fig. 7. The same method applies to 4D
editing, with results included in Fig. 12.

D.4. Roles of Representation Components
Below we discuss the roles of representation components,
P (programs), W (words), and Z (embeddings).

We ablate the roles of P and W on the 3D editing task
as follows: (i) No-P , replacing the scene language with a
leaf entity list (i.e., a list of word-pose tuples) before query-
ing language models (LMs) to edit, (ii) No-W , replacing
function names with random strings, and (iii) No-P -No-W ,
removing words from (i).

We run these variants, together with baseline methods, to
edit the top-left scene in Fig. 10. Input prompts and results
are shown in Fig. 13(a). Removing P and/or W degrades
the accuracy of the results, suggesting that both components
contribute to an intuitive and accurate editing interface. On
the other hand, the two baseline methods do not encode pre-
cise spatial information of scene components and require
regenerating the scene (we use prompt “A basket upside-
down with toys in the basket”), failing to preserve the orig-
inal generated content.

Embeddings Z are necessary for image-prompted edit-
ing (Fig. 8). For generation tasks, W and Z are both
required by neural renderers, and we ablate P by query-

“Make the basket upside-down and place all toys in the basket”
Ours (Full) Ours (No-P)GraphDreamer

(a) 3D Editing

Ours (No-W) Ours (No-P-No-W) Ours (No-P)
“15 coke cans stacking in a pyramid”
Ours (Full)

(b) 3D Generation

MVDream Llama 3.3

Figure 13. Ablations.

(a) Rendering
(First Frame)

(b) Semantic
Segmentation

(c) Instance
Segmentation

(d) Instance
Correspondence

Figure 14. Visualizations of Discriminative Maps.

“Octopus
sculpture”
(Sample 1)

“Octopus
sculpture”
(Sample 2)

“Octopus”
(Sample 1)

“Octopus
puppet”

(Sample 1)

Input Image Sample 1 Sample 2 Sample 3

(a) Prompt sensitivity

(b) Image parsing errors

Figure 15. Failure Cases.

ing LMs to directly generate entity lists. As shown in
Fig. 13(b), removing programs harms LM accuracy; alter-
native backbone Llama has inferior performance.

D.5. Visualization of Discriminative Information

Several pieces of discriminative information can be di-
rectly obtained with the proposed Scene Language: seman-
tic maps in Fig. 14(b), as words represent per-entity seman-
tics; instance segmentation in Fig. 14(c), as the representa-
tion is compositional with separable instances; correspon-
dence of the repeated instances in Fig. 14(d), as programs
specify repetitions existing in a scene; dense temporal cor-
respondence for 4D scenes, as shown in Fig. 6.

E. Limitations
The current inference pipeline inherits limitations of the
backbone pre-trained models.
LM/VLM errors. For text-conditioned tasks, minor vari-
ations in textual scene descriptions can lead to large qual-
ity differences in the output as shown in Fig. 15 (a). For
image-conditioned tasks, input images are parsed with the
backbone visual language model. In the example in Fig. 15
(b), with the same input image, parsing results have high
variance across multiple inference runs.
T2I Model Bias. While the non-neural engines adopted
are fully controllable and correct, neural-based engines may
introduce additional errors, e.g., the rendered umbrella is
not fully folded (Fig. 10) due to the bias in T2I models.
Furthermore, the controls over texture and shapes are not
disentangled for neural engines, resulting in mixed texture
and shape changes in Fig. 8 as they are both affected by
embeddings.

While this work provides a viable inference method
for the proposed representation that leverages the com-
monsense knowledge and code-writing capability of LMs
and expressive renderings from T2I models, addressing
the weaknesses inherited from these pre-trained models
would further improve the robustness, complexity, and out-
put quality for downstream tasks. We leave these as future
directions to improve the inference of the Scene Language.

F. Language Model Prompts and Responses
F.1. Language Model Prompts
F.1.1. Text- and Image-Conditioned Scene Generation
In Sec. 5, we introduced an inference method for the rep-
resentation by prompting LMs. The full system prompt is
displayed below. The system prompt defines the data types
and the function headers of macros from the DSL in Tab. 5,
written in Python.

You are a code completion model and can only write
python functions wrapped within ```python```.↪→

You are provided with the following `helper.py`
which defines the given functions and
definitions:

↪→
↪→
```python



"""This module contains a Domain-Specific Language
(DSL) designed↪→

with built-in support for loops and functions for
shape construction and transformation.↪→

"""

from typing import NamedTuple, Any, Callable,
Literal↪→

import math
import numpy as np

# type aliases and DSL syntax sugar
P = Any # 3D vector, e.g., a point or direction
T = Any # 4x4 transformation matrix
Shape = list[dict[str, Any]] # a shape is a list

of primitive shapes↪→

# shape function library utils

def register(docstring: str):
"""
Registers a function whose name must be unique.

Provide keyword argument defaults for
easier debugging.

↪→
↪→
"""

def library_call(func_name: str, **kwargs) ->
Shape:↪→
"""
Call a function from the library and return its

outputs. You are responsible for
registering the function with `register`.

↪→
↪→

Args:
func_name (str): Function name.
**kwargs: Keyword arguments passed to the

function.↪→
"""

def primitive_call(name: Literal['cube', 'sphere',
'cylinder'], shape_kwargs: dict[str, Any],
color: tuple[float, float, float] = (1.0, 1.0,
1.0)) -> Shape:

↪→
↪→
↪→

"""
Constructs a primitive shape.

Args:
name: str - 'cube', 'sphere', or

'cylinder'.↪→
shape_kwargs: dict[str, Any] - keyword

arguments for the primitive shape.↪→
- For 'cube': {'scale': P} - 3-tuple of

floats for scaling along x, y, z
axes.

↪→
↪→
- For 'sphere': {'radius': float} -

radius of the sphere.↪→
- For 'cylinder': {'radius': float,

'p0': P, 'p1': P}↪→
- radius: float - radius of the

cylinder.↪→
- p0: P - 3-tuple of floats for the

start point of the cylinder's
centerline.

↪→
↪→
- p1: P - 3-tuple of floats for the

end point of the cylinder's
centerline.

↪→
↪→

color: Tuple[float, float, float] - RGB
color in range [0, 1]ˆ3.↪→

Returns:
Shape - the primitive shape.

Examples:
- `primitive_call('cube',

shape_kwargs={'scale': (1, 2, 1)})`↪→
Returns a cube with corners (-0.5, -1,

-0.5) and (0.5, 1, 0.5).↪→
- `primitive_call('sphere',

shape_kwargs={'radius': 0.5})`↪→
Returns a sphere with radius 0.5, with

bounding box corners (-0.5, -0.5,
-0.5) and (0.5, 0.5, 0.5).

↪→
↪→

- `primitive_call('cylinder',
shape_kwargs={'radius': 0.5, 'height':
1})`

↪→
↪→

Returns a cylinder with radius 0.5,
height 1, with bounding box corners
(-0.5, -0.5, -0.5) and (0.5, 0.5,
0.5).

↪→
↪→
↪→

"""

# control flows

def loop(n: int, fn: Callable[[int], Shape]) ->
Shape:↪→
"""
Simple loop executing a function `n` times and

concatenating the results.↪→

Args:
n (int): Number of iterations.
fn (Callable[[int], Shape]): Function that

takes the current iteration index
returns a shape.

↪→
↪→

Returns:
Concatenated shapes from each iteration.

"""

# shape manipulation

def concat_shapes(*shapes: Shape) -> Shape:
"""
Combines multiple shapes into a single shape.
"""

def transform_shape(shape: Shape, pose: T) ->
Shape:↪→
"""
Args:

shape: Shape
pose: T - If pose is A @ B, then B is

applied first, followed by A.↪→

Returns:
The input shape transformed by the given

pose.↪→
"""

# pose transformation

def rotation_matrix(angle: float, direction: P,
point: P) -> T:↪→
"""
Args:

angle (float) : the angle of rotation in
radians↪→

direction (P) : the axis of rotation
point (P) : the point about which the

rotation is performed↪→
"""

def translation_matrix(offset: P) -> T:
"""
Args:

offset (P) : the translation vector
"""

def scale_matrix(scale: float, origin: P) -> T:
"""
Args:

scale (float) - the scaling factor, only
uniform scaling is supported↪→

origin (P) - the origin of the scaling
operation↪→

"""
def identity_matrix() -> T:

"""
Returns the identity matrix in SE(3).
"""

# calculate locations and sizes of shape bounding
boxes↪→

def compute_shape_center(shape: Shape) -> P:
"""
Returns the shape center.
"""

def compute_shape_min(shape: Shape) -> P:
"""
Returns the min corner of the shape.
"""

def compute_shape_max(shape: Shape) -> P:
"""
Returns the max corner of the shape.



"""
def compute_shape_sizes(shape: Shape) -> P:

"""
Returns the shape sizes along x, y, and z axes.
"""

```

STRICTLY follow these rules:
1. Only use the functions and imported libraries in

`helper.py`.↪→
2. You can only write functions. Follow a modular

approach and use the `register` decorator to
define semantic shapes or shape groups.

↪→
↪→
3. Camera coordinate system: +x is right, +y is up,

+z is backward.↪→
4. You can use shape primitives to approximate

shape components that are too complex. You must
make sure shape have correct poses. Be careful
about `set_mode` and `set_to` from
`primitive_call`.

↪→
↪→
↪→
↪→
5. You must use `library_call` to call registered

functions.↪→
6. Use `compute_shape_*` from `helper.py` if

possible to compute transformations.↪→

You should be precise and creative.

The full user prompt for image or text-conditioned 3D
generation is displayed below. It includes an example valid
program, and the task specification indicated with a place-
holder {task}. For text-conditioned generation (Sec. 6.1),
it is replaced with the input textual scene description. For
image-conditioned generation (Sec. 6.2), it is replaced with
"Reconstruct the input scene", and the input
image is also fed into LM.

Here are some examples of how to use `helper.py`:
```python
from helper import *

"""
A pile of books on a desk
"""

@register("book")
def book(scale: P) -> Shape:

return primitive_call('cube', color=(.6, .3,
.1), shape_kwargs={'scale': scale})↪→

@register("books")
def books(width: float, length: float, book_height:

float, num_books: int) -> Shape:↪→
def loop_fn(i) -> Shape:

book_shape = library_call('book',
scale=(width, book_height, length))↪→

book_shape = transform_shape(book_shape,
translation_matrix([np.random.uniform( ⌋
-0.05, 0.05), i * book_height,
np.random.uniform(-0.05, 0.05)])) #
FIRST translate

↪→
↪→
↪→
↪→
book_center =

compute_shape_center(book_shape) #
must be computed AFTER transformation!!

↪→
↪→
return transform_shape(book_shape,

rotation_matrix(np.random.uniform(-0.1,
0.1), direction=(0, 1, 0),
point=book_center)) # THEN tilt

↪→
↪→
↪→

return loop(num_books, loop_fn)

@register("desk")
def desk(scale: P) -> Shape:

return primitive_call('cube', color=(.4, .2,
.1), shape_kwargs={'scale': scale})↪→

@register('desk with books')

def desk_with_books() -> Shape:
desk_shape = library_call('desk', scale=(1, .1,

.5))↪→
books_shape = library_call('books', width=.21,

length=.29, book_height=.05, num_books=3)↪→
_, desk_top, _ = compute_shape_max(desk_shape)
_, books_bottom, _ =

compute_shape_min(books_shape)↪→
return concat_shapes(

desk_shape,
transform_shape(books_shape,

translation_matrix((0, desk_top -
books_bottom, 0))) # stack books on
top of desk

↪→
↪→
↪→

)

```
IMPORTANT: THE FUNCTIONS ABOVE ARE JUST EXAMPLES,

YOU CANNOT USE THEM IN YOUR PROGRAM!↪→

Now, write a similar program for the given task:
```python
from helper import *

"""
{task}
"""
```

F.1.2. Scene Editing
For text-prompted scene editing (Sec. 6.1), we prompt the
LM in two rounds, first with a textual scene description
with the same protocol from Sec. 6.1, and then with an
editing instruction, e.g., "move the apple to the
left". In the second round, the system prompt remains
the same as Appendix F.1.1. The user prompt is as follows,
where {program} is the LM output from first round, and
{task} is the editing instruction.

Here is a program using `helper.py`:
```python
{program}
```
Now, do minimal edit to the program such that the

scene function, when called, will follow the
instruction: {task}.

↪→
↪→
Your code starts here.
```python
from helper import *

"""
{task}
"""

F.1.3. 4D Generation
For 4D generation, we include one more macro definition
in the system prompt as shown below, with the remaining
system prompt the same as above:

```python
def register_animation(docstring: str | None =

None):↪→
"""
Registers an animation function which is stored

in the global `animation_func`. You can
pass an optional docstring.

↪→
↪→

If you register a function, there a couple of
rules:↪→
- That function should never be called

anywhere else in the program. This
function gets used later by the
rendering engine.

↪→
↪→
↪→
- This function needs a return type of

`Generator[Shape, None, None]`.↪→
"""


```

The full user prompt for 4D generation is displayed be-
low:

Here are some examples of how to use `helper.py`:
```python
from helper import *

"""
three ghosts chasing a yellow pacman
"""

@register()
def pacman() -> Shape:

return primitive_call('cube', color=(1, 1, 0),
scale=.8)↪→

@register()
def ghosts() -> Shape:

return loop(3, lambda i: transform_shape(
library_call('ghost', color=(i / 3, 1 - i /

3, 1 - i / 3)),↪→
translation_matrix([i, 0, 0])

))

@register()
def ghost(color) -> Shape:

return primitive_call('sphere', color=color,
scale=.8)↪→

@register_animation()
def pacman_chase_animation() -> Generator[Shape,

None, None]:↪→
an animated scene
total_frames = 4 # Number of frames in the

animation↪→

for frame in range(total_frames):
pacman_x = - frame / total_frames
ghost_x_offset = - 2 * frame / total_frames

Move pacman and ghost
pacman =

transform_shape(library_call('pacman'),
translation_matrix([pacman_x, 0, 0]))

↪→
↪→
ghosts =

transform_shape(library_call('ghosts'),
translation_matrix([2 + ghost_x_offset,
0, 0]))

↪→
↪→
↪→

Export the shape, which is a frame in the
animation↪→

yield concat_shapes(pacman, ghosts)

```
IMPORTANT: THE FUNCTIONS ABOVE ARE JUST EXAMPLES,

YOU CANNOT USE THEM IN YOUR PROGRAM!↪→

Now, write a similar program for the given task:
```python
from helper import *

"""
{task}
"""
```

F.1.4. Minecraft Rendering
We adapt the prompts from Appendix F.1.1 to prompt LM
to generate Minecraft-compatible outputs. Note that pro-
grams generated in this section can still be rendered using
Mitsuba renderer, as shown in Fig. 5, by converting each
Minecraft block from LM outputs to a Mitsuba cube prim-
itive with the corresponding location and with the color set
as the average color of the Minecraft block.

Specifically, we remove rotation matrix and
reflection matrix from the system prompt in
Appendix F.1.1 and change the function header for
primitive call to the follows:

```python
def primitive_call(name: Literal['set_cuboid',

'delete_blocks'], **kwargs) -> Shape:↪→
"""
Args:

name: str - the name of the primitive
action↪→
support 'set_cuboid', 'delete_blocks'

...: Any - additional arguments for the
primitive action↪→
For 'set_cuboid':

- block_type: a string that denotes
the block type, e.g. 'oak_log'.
THESE MUST BE VALID LITEMATIC
BLOCK TYPES.

↪→
↪→
↪→
- block_kwargs: a dict[str, str] of

additional properties to define
a block's state fully, e.g. for
'oak_log', we need to define
the axis with possible values
'x', 'y', or 'z'

↪→
↪→
↪→
↪→
↪→
- scale: a list of 3 elements,

denoting the scaling along the
positive x, y, and z axises
respectively. IMPORTANT: THESE
CAN ONLY BE INTEGERS!

↪→
↪→
↪→
↪→
- fill: a boolean, describing

whether the cuboid should be
filled, or be hollow. Hint:
this can be useful for creating
structures that should be
hollow, such as a building.

↪→
↪→
↪→
↪→
↪→

For 'delete_blocks':
- scale: a list of 3 elements,

denoting the scaling along the
positive x, y, and z axises
respectively. IMPORTANT: THESE
CAN ONLY BE INTEGERS!

↪→
↪→
↪→
↪→

Returns:
Shape -

For 'set_cuboid': a cuboid composed of
Minecraft blocks, with the closest
block at (0, 0, 0) and furthest
(right, back-most) block at
(scale[0], scale[1], scale[2]).

↪→
↪→
↪→
↪→
For 'delete_blocks': an empty

cuboid-shaped space without any
blocks, starting from the closest
block at (0, 0, 0) and furthest
(right, back-most) block at
(scale[0], scale[1], scale[2]).

↪→
↪→
↪→
↪→
↪→

"""
```

And we change the example program for user prompt
accordingly to the follows:

```python
from helper import *

"""
A red cube on the top left of a blue pyramid of

height 4.↪→
"""

@register()
def cube_set() -> Shape:

return concat_shapes(
library_call('red_cube'), # expects a cube

with left-bottom-front corner block at
(-2, 7, 2) and dims 2x2x2

↪→
↪→
library_call('blue_pyramid'), # expects a

blue pyramid of height 4↪→
) # hint: these library calls must be

implemented to be compatible with the usage↪→

@register()
def red_cube() -> Shape:

return transform_shape(
primitive_call('set_cuboid',

block_type='minecraft:redstone_block',
scale=(2, 2, 2), fill=True),

↪→
↪→
translation_matrix([-2, 7, 2]))

@register()
def blue_pyramid(n: int = 4) -> Shape:

def create_pyramid_layer(i):
Logic here is that for the ith layer, it

has dims (2*i + 1) x1x(2*i + 1.↪→
We need to then shift that in the x

dimension to center it, and then also
in the y dimension to lift to the right
layer of the pyramid.

↪→
↪→
↪→
side_length = i * 2 + 1
last_layer_length = n * 2 + 1
x_z_offset = (last_layer_length -

side_length) // 2↪→
y_offset = n - i - 1
return transform_shape(

primitive_call('set_cuboid',
block_type='minecraft:lapis_block',
scale=(side_length, 1,
side_length),

↪→
↪→
↪→

fill=True),
translation_matrix([x_z_offset,

y_offset, x_z_offset]))↪→

return loop(4, create_pyramid_layer)

"""
A forest of trees of varying heights.
"""

@register()
def forest(leaf_size: int = 3) -> Shape:

Double for loop for placing the trees
tree_padding = leaf_size * 2 + 3 # This is how

far the center point of each tree should be
from each other

↪→
↪→
return loop(4, lambda i: loop(4, lambda j:
transform_shape(library_call('simple_tree',

height=random.randint(3, 7)), # Make it
random to give the appearance of having
varying heights

↪→
↪→
↪→

translation_matrix([i *
leaf_size + tree_padding,
0, j * leaf_size +
tree_padding]))))

↪→
↪→
↪→

@register()
def simple_tree(height: int = 4) -> Shape:

return concat_shapes(
library_call('trunk', trunk_height=height),
transform_shape(library_call('leaves',

leaf_size=3), # If you pass in extra
arguments to library_call, they need to
be NAMED arguments. Passing in 3 here
without "leaf_size" will error.

↪→
↪→
↪→
↪→

translation_matrix([-1,
height, -1]) # Center
the leaves on top of
the trunk

↪→
↪→
↪→
))

@register()
def leaves(leaf_size: int = 3) -> Shape:

return primitive_call('set_cuboid',
block_type='minecraft:oak_leaves',
block_kwargs={'distance': '7',
'persistent': "true", 'waterlogged':
"false"}, scale=(leaf_size, leaf_size,
leaf_size), fill=True)

↪→
↪→
↪→
↪→
↪→

@register()
def trunk(trunk_height: int = 4) -> Shape:

return primitive_call('set_cuboid',
block_type='minecraft:oak_log',
block_kwargs={'axis': 'y'}, scale=(1,
trunk_height, 1), fill=True)

↪→
↪→
↪→

```

F.2. Language Model Outputs
F.2.1. Text-Conditioned 3D Generation

Example 1. This example corresponds to Fig. 1.
Input: "Moai in Ahu Akivi, with slight

variations".
Output:

Here's a program to create Moai statues in Ahu
Akivi with slight variations:↪→

```python
from helper import *

"""
Moai in Ahu Akivi, with slight variations
"""

@register()
def moai_head(scale: float) -> Shape:

head = primitive_call('cube', color=(0.5, 0.5,
0.5), shape_kwargs={'scale': (scale,
scale*1.5, scale*0.8)})

↪→
↪→
nose = primitive_call('cube', color=(0.45,

0.45, 0.45), shape_kwargs={'scale':
(scale*0.2, scale*0.4, scale*0.3)})

↪→
↪→
nose = transform_shape(nose,

translation_matrix((0, -scale*0.2,
scale*0.4)))

↪→
↪→
return concat_shapes(head, nose)

@register()
def moai_body(scale: float) -> Shape:

body = primitive_call('cube', color=(0.55,
0.55, 0.55), shape_kwargs={'scale':
(scale*0.8, scale*2, scale*0.6)})

↪→
↪→
return body

@register()
def moai(scale: float) -> Shape:

head = library_call('moai_head', scale=scale)
body = library_call('moai_body', scale=scale)

head_min = compute_shape_min(head)
body_max = compute_shape_max(body)

head = transform_shape(head,
translation_matrix((0, body_max[1] -
head_min[1], 0)))

↪→
↪→

return concat_shapes(body, head)

@register()
def ahu_platform(width: float, height: float,

depth: float) -> Shape:↪→
platform = primitive_call('cube', color=(0.3,

0.3, 0.3), shape_kwargs={'scale': (width,
height, depth)})

↪→
↪→
return platform

@register()
def moai_with_variation(base_scale: float) ->

Shape:↪→
scale_variation = np.random.uniform(0.9, 1.1)
rotation_variation = np.random.uniform(-0.05,

0.05)↪→

moai_statue = library_call('moai',
scale=base_scale * scale_variation)↪→

moai_center = compute_shape_center(moai_statue)

return transform_shape(moai_statue,
rotation_matrix(rotation_variation, (0, 1,
0), moai_center))

↪→
↪→

@register()
def ahu_akivi_scene() -> Shape:

platform = library_call('ahu_platform',
width=14, height=1, depth=4)↪→

platform_top = compute_shape_max(platform)[1]

def create_moai(i: int) -> Shape:
moai = library_call('moai_with_variation',

base_scale=1.5)↪→
moai_bottom = compute_shape_min(moai)[1]
x_position = (i - 3) * 2 # Distribute 7

Moai evenly↪→
return transform_shape(moai,

translation_matrix((x_position,
platform_top - moai_bottom, 0)))

↪→
↪→

moai_statues = loop(7, create_moai)

return concat_shapes(platform, moai_statues)
```

This program creates a scene of Moai statues in Ahu
Akivi with the following components:↪→

1. `moai_head`: Creates a simplified Moai head
using cubes for the main head and nose.↪→

2. `moai_body`: Creates a simplified Moai body
using a cube.↪→

3. `moai`: Combines the head and body to form a
complete Moai statue.↪→

4. `ahu_platform`: Creates the stone platform (ahu)
on which the Moai stand.↪→

5. `moai_with_variation`: Applies slight variations
in scale and rotation to each Moai.↪→

6. `ahu_akivi_scene`: Creates the entire scene with
a platform and seven Moai statues.↪→

The scene features seven Moai statues standing on a
stone platform, similar to the real Ahu Akivi
site. Each Moai has slight variations in size
and rotation to add visual interest and realism
to the scene.

↪→
↪→
↪→
↪→

Example 2. This example corresponds to Fig. 2.
Input: "a chessboard at game start".
Output:

Here's a program to create a chessboard at game
start using the provided `helper.py`:↪→

```python
from helper import *

"""
a chessboard at game start
"""

@register("chess_square")
def chess_square(color: tuple[float, float, float])

-> Shape:↪→
return primitive_call('cube', color=color,

shape_kwargs={'scale': (0.125, 0.02,
0.125)})

↪→
↪→

@register("chessboard")
def chessboard() -> Shape:

def loop_fn(i) -> Shape:
row = i // 8
col = i % 8
color = (0.9, 0.9, 0.9) if (row + col) % 2

== 0 else (0.1, 0.1, 0.1)↪→
square = library_call('chess_square',

color=color)↪→
return transform_shape(square,

translation_matrix((col * 0.125, 0, row
* 0.125)))

↪→
↪→

return loop(64, loop_fn)

@register("chess_pawn")
def chess_pawn(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.05, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.04, 'p0': (0,
0.02, 0), 'p1': (0, 0.08, 0)})

↪→
↪→

head = primitive_call('sphere', color=color,
shape_kwargs={'radius': 0.035})↪→

head = transform_shape(head,
translation_matrix((0, 0.115, 0)))↪→

return concat_shapes(base, body, head)

@register("chess_rook")
def chess_rook(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.05, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.04, 'p0': (0,
0.02, 0), 'p1': (0, 0.1, 0)})

↪→
↪→
top = primitive_call('cube', color=color,

shape_kwargs={'scale': (0.09, 0.03, 0.09)})↪→
top = transform_shape(top,

translation_matrix((0, 0.115, 0)))↪→
return concat_shapes(base, body, top)

@register("chess_knight")
def chess_knight(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.05, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.04, 'p0': (0,
0.02, 0), 'p1': (0, 0.08, 0)})

↪→
↪→
head = primitive_call('cube', color=color,

shape_kwargs={'scale': (0.06, 0.08, 0.04)})↪→
head = transform_shape(head,

translation_matrix((0.01, 0.11, 0)))↪→
head = transform_shape(head,

rotation_matrix(0.3, (0, 0, 1), (0, 0.11,
0)))

↪→
↪→
return concat_shapes(base, body, head)

@register("chess_bishop")
def chess_bishop(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.05, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.04, 'p0': (0,
0.02, 0), 'p1': (0, 0.1, 0)})

↪→
↪→
head = primitive_call('sphere', color=color,

shape_kwargs={'radius': 0.03})↪→
head = transform_shape(head,

translation_matrix((0, 0.13, 0)))↪→
top = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.01, 'p0': (0,
0.13, 0), 'p1': (0, 0.16, 0)})

↪→
↪→
return concat_shapes(base, body, head, top)

@register("chess_queen")
def chess_queen(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.055, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.045, 'p0': (0,
0.02, 0), 'p1': (0, 0.12, 0)})

↪→
↪→
crown = primitive_call('sphere', color=color,

shape_kwargs={'radius': 0.04})↪→
crown = transform_shape(crown,

translation_matrix((0, 0.16, 0)))↪→
top = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.01, 'p0': (0,
0.16, 0), 'p1': (0, 0.2, 0)})

↪→
↪→
return concat_shapes(base, body, crown, top)

@register("chess_king")
def chess_king(color: tuple[float, float, float])

-> Shape:↪→
base = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.06, 'p0': (0, 0,
0), 'p1': (0, 0.02, 0)})

↪→
↪→
body = primitive_call('cylinder', color=color,

shape_kwargs={'radius': 0.05, 'p0': (0,
0.02, 0), 'p1': (0, 0.14, 0)})

↪→
↪→
crown = primitive_call('cube', color=color,

shape_kwargs={'scale': (0.1, 0.03, 0.1)})↪→

crown = transform_shape(crown,
translation_matrix((0, 0.17, 0)))↪→

cross_v = primitive_call('cube', color=color,
shape_kwargs={'scale': (0.02, 0.06, 0.02)})↪→

cross_v = transform_shape(cross_v,
translation_matrix((0, 0.215, 0)))↪→

cross_h = primitive_call('cube', color=color,
shape_kwargs={'scale': (0.06, 0.02, 0.02)})↪→

cross_h = transform_shape(cross_h,
translation_matrix((0, 0.215, 0)))↪→

return concat_shapes(base, body, crown,
cross_v, cross_h)↪→

@register("chess_pieces")
def chess_pieces() -> Shape:

white = (0.9, 0.9, 0.9)
black = (0.1, 0.1, 0.1)
pieces = []

Place pawns
for i in range(8):

white_pawn = library_call('chess_pawn',
color=white)↪→

black_pawn = library_call('chess_pawn',
color=black)↪→

pieces.append(transform_shape(white_pawn,
translation_matrix((i * 0.125, 0.02,
0.125))))

↪→
↪→
pieces.append(transform_shape(black_pawn,

translation_matrix((i * 0.125, 0.02,
0.75))))

↪→
↪→

Place other pieces
piece_order = ['rook', 'knight', 'bishop',

'queen', 'king', 'bishop', 'knight',
'rook']

↪→
↪→
for i, piece in enumerate(piece_order):

white_piece =
library_call(f'chess_{piece}',
color=white)

↪→
↪→
black_piece =

library_call(f'chess_{piece}',
color=black)

↪→
↪→
pieces.append(transform_shape(white_piece,

translation_matrix((i * 0.125, 0.02,
0))))

↪→
↪→
pieces.append(transform_shape(black_piece,

translation_matrix((i * 0.125, 0.02,
0.875))))

↪→
↪→

return concat_shapes(*pieces)

@register("chessboard_at_game_start")
def chessboard_at_game_start() -> Shape:

board = library_call('chessboard')
pieces = library_call('chess_pieces')
return concat_shapes(board, pieces)

```

This program creates a chessboard at game start
with the following components:↪→

1. A chessboard made of alternating white and black
squares.↪→

2. Chess pieces for both white and black sides,
including pawns, rooks, knights, bishops,
queens, and kings.

↪→
↪→
3. The pieces are placed in their correct starting

positions on the board.↪→

To use this program and generate the chessboard at
game start, you would call:↪→

```python
chessboard_scene =

library_call('chessboard_at_game_start')↪→
```

This will return a complete chessboard with all
pieces in their starting positions.↪→

F.2.2. Text-Conditioned 3D Editing
In this task, for each example, we prompt LM in two
rounds—the first round with a scene description as task
specification, and the second round with editing instruc-

tions. LM outputs in the first round are omitted. Rendering
outputs are shown in Fig. 7 and Fig. 11.
Example 1. Input scene description: "Bramante
Staircase, Vatican Museums". Input editing in-
struction: "shrink staircase radius by 80%".

Output:

Here's the minimally edited program that shrinks
the staircase radius by 80%:↪→

```python
from helper import *

"""
Shrink staircase radius by 80%
"""

@register()
def stair_step(width: float, height: float, depth:

float) -> Shape:↪→
return primitive_call('cube', color=(0.8, 0.8,

0.8), shape_kwargs={'scale': (width,
height, depth)})

↪→
↪→

@register()
def spiral_staircase(radius: float, height: float,

num_steps: int) -> Shape:↪→
def loop_fn(i: int) -> Shape:

angle = (i / num_steps) * 2 * math.pi
step_width = 0.8 * radius
step_height = height / num_steps
step_depth = 0.3 * radius

step = library_call('stair_step',
width=step_width, height=step_height,
depth=step_depth)

↪→
↪→

y_offset = i * step_height
x_offset = radius * math.cos(angle)
z_offset = radius * math.sin(angle)

step = transform_shape(step,
translation_matrix((x_offset, y_offset,
z_offset)))

↪→
↪→
return transform_shape(step,

rotation_matrix(angle, (0, 1, 0),
(x_offset, y_offset, z_offset)))

↪→
↪→

return loop(num_steps, loop_fn)

@register()
def central_column(radius: float, height: float) ->

Shape:↪→
return primitive_call('cylinder', color=(0.7,

0.7, 0.7),↪→
shape_kwargs={'radius':

radius, 'p0': (0, 0,
0), 'p1': (0, height,
0)})

↪→
↪→
↪→

@register()
def bramante_staircase() -> Shape:

staircase_radius = 5.0 * 0.2 # Shrink
staircase radius by 80%↪→

staircase_height = 15.0
num_steps = 60
column_radius = 0.5 * 0.2 # Shrink column

radius proportionally↪→

stairs = library_call('spiral_staircase',
radius=staircase_radius,
height=staircase_height,
num_steps=num_steps)

↪→
↪→
↪→
column = library_call('central_column',

radius=column_radius,
height=staircase_height)

↪→
↪→

return concat_shapes(stairs, column)
```

In this edited version, I've made the following
changes to shrink the staircase radius by 80%:↪→



1. In the `bramante_staircase` function, I've
modified the `staircase_radius` by multiplying
it by 0.2 (which is equivalent to reducing it
by 80%):

↪→
↪→
↪→

```python
staircase_radius = 5.0 * 0.2 # Shrink staircase

radius by 80%↪→
```

2. To maintain proportions, I've also adjusted the
`column_radius` by the same factor:↪→

```python
column_radius = 0.5 * 0.2 # Shrink column

radius proportionally↪→
```

These changes will result in a Bramante staircase
that has a radius 80% smaller than the
original, while maintaining the same height and
number of steps. The central column has also
been proportionally reduced to maintain the
overall look of the structure.

↪→
↪→
↪→
↪→
↪→

Example 2. Input scene description: "a 8-layer
3-color Jenga set at game start". In-
put editing instruction: "remove 2 blocks from
second top layer and the tower should
not fall".

Output:

Here's the minimally edited program to remove 2
blocks from the second top layer of the Jenga
tower:

↪→
↪→

```python
from helper import *

"""
Remove 2 blocks from second top layer and the tower

should not fall↪→
"""

@register()
def jenga_block(color: tuple[float, float, float])

-> Shape:↪→
"""Create a single Jenga block"""
return primitive_call('cube', color=color,

shape_kwargs={'scale': (0.75, 0.5, 2.25)})↪→

@register()
def jenga_layer(is_horizontal: bool, y_offset:

float, colors: list[tuple[float, float,
float]], remove_blocks: list[int] = []) ->
Shape:

↪→
↪→
↪→

"""Create a layer of 3 Jenga blocks, optionally
removing specified blocks"""↪→

def block_fn(i: int) -> Shape:
if i in remove_blocks:

return []
block = library_call('jenga_block',

color=colors[i])↪→
if is_horizontal:

transform = translation_matrix((i *
0.75 - 0.75, y_offset, 0))↪→

else:
transform = translation_matrix((0,

y_offset, i * 0.75 - 0.75))↪→
transform = transform @

rotation_matrix(math.pi/2, (0, 1,
0), (0, 0, 0))

↪→
↪→

return transform_shape(block, transform)

return loop(3, block_fn)

@register()
def jenga_tower() -> Shape:

"""Create an 8-layer Jenga tower with 2 blocks
removed from the second top layer"""↪→

colors = [(0.8, 0.4, 0.3), (0.9, 0.7, 0.5),
(0.6, 0.3, 0.1)]↪→

def layer_fn(i: int) -> Shape:
is_horizontal = i % 2 == 0
y_offset = i * 0.5
layer_colors = [colors[i % 3], colors[(i+1)

% 3], colors[(i+2) % 3]]↪→
remove_blocks = [0, 2] if i == 6 else [] #

Remove blocks 0 and 2 from the second
top layer (index 6)

↪→
↪→
return library_call('jenga_layer',

is_horizontal=is_horizontal,
y_offset=y_offset, colors=layer_colors,
remove_blocks=remove_blocks)

↪→
↪→
↪→

return loop(8, layer_fn)

@register()
def jenga_set() -> Shape:

"""Create a complete Jenga set with 2 blocks
removed from the second top layer"""↪→

tower = library_call('jenga_tower')
base = primitive_call('cube', color=(0.4, 0.2,

0.1), shape_kwargs={'scale': (3, 0.1, 3)})↪→

tower_min = compute_shape_min(tower)
base_max = compute_shape_max(base)

return concat_shapes(
base,
transform_shape(tower,

translation_matrix((0, base_max[1] -
tower_min[1], 0)))

↪→
↪→

)
```

This modified version of the program removes 2
blocks from the second top layer of the Jenga
tower. Here are the changes made:

↪→
↪→

1. The `jenga_layer` function now accepts an
optional `remove_blocks` parameter, which is a
list of block indices to remove from the layer.

↪→
↪→

2. In the `jenga_tower` function, we modify the
`layer_fn` to remove blocks 0 and 2 (the
leftmost and rightmost blocks) from the second
top layer (index 6, since we're counting from
0).

↪→
↪→
↪→
↪→

3. The rest of the program remains the same,
ensuring that the tower is still placed on the
base and the overall structure is maintained.

↪→
↪→

These changes will result in a Jenga tower with two
blocks missing from the second top layer, while
the rest of the tower remains intact. The tower
should not fall because the top layer is still
fully supported by the remaining block in the
second top layer.

↪→
↪→
↪→
↪→
↪→

Example 3. Input scene description: "a fractal
tree-like structure". Input editing instruction:
"make branching structure to be trinary
and 3D".

Output:

Here's a program that creates a simple but
interesting shape using function recursion,
without being a pyramid:

↪→
↪→

```python
from helper import *

"""
A fractal tree-like structure
"""

@register()
def branch(length: float, radius: float, depth:

int) -> Shape:↪→
if depth == 0:

return primitive_call('cylinder',
shape_kwargs={'radius': radius, 'p0':
(0, 0, 0), 'p1': (0, length, 0)},
color=(0.6, 0.4, 0.2))

↪→
↪→
↪→

main_branch = primitive_call('cylinder',
shape_kwargs={'radius': radius, 'p0': (0,
0, 0), 'p1': (0, length, 0)}, color=(0.6,
0.4, 0.2))

↪→
↪→
↪→

sub_branch_length = length * 0.7
sub_branch_radius = radius * 0.6

left_branch = library_call('branch',
length=sub_branch_length,
radius=sub_branch_radius, depth=depth-1)

↪→
↪→
right_branch = library_call('branch',

length=sub_branch_length,
radius=sub_branch_radius, depth=depth-1)

↪→
↪→

angle = 0.5 # ˜28.6 degrees

left_transform = translation_matrix((0, length,
0)) @ rotation_matrix(angle, (0, 0, 1), (0,
0, 0))

↪→
↪→
right_transform = translation_matrix((0,

length, 0)) @ rotation_matrix(-angle, (0,
0, 1), (0, 0, 0))

↪→
↪→

return concat_shapes(
main_branch,
transform_shape(left_branch,

left_transform),↪→
transform_shape(right_branch,

right_transform)↪→
)

@register()
def fractal_tree(base_length: float = 1.0,

base_radius: float = 0.1, depth: int = 5) ->
Shape:

↪→
↪→

tree = library_call('branch',
length=base_length, radius=base_radius,
depth=depth)

↪→
↪→
tree_min = compute_shape_min(tree)
return transform_shape(tree,

translation_matrix((-tree_min[0],
-tree_min[1], 0)))

↪→
↪→

```

This program creates a fractal tree-like structure
using function recursion. Here's how it works:↪→

1. The `branch` function is the core of the
recursion. It creates a cylinder for the main
branch and then recursively creates two smaller
branches at its top, rotated at angles.

↪→
↪→
↪→

2. The recursion depth is controlled by the `depth`
parameter. When `depth` reaches 0, it just
returns a single cylinder.

↪→
↪→

3. For each recursive call, the length and radius
of the branches are reduced by a factor.↪→

4. The `fractal_tree` function is a wrapper that
calls `branch` and then adjusts the position of
the entire tree so that its base is at the
origin.

↪→
↪→
↪→

This shape is interesting because:
- It's self-similar at different scales, which is a

characteristic of fractals.↪→
- It's not a simple geometric shape like a pyramid,

but a complex structure built from simple
components.

↪→
↪→
- The recursive nature of the function allows for

easy adjustment of the complexity by changing
the `depth` parameter.

↪→
↪→
- It resembles natural structures like trees or

blood vessels, demonstrating how complex
natural forms can arise from simple recursive
rules.

↪→
↪→
↪→

You can create trees of different complexity by
adjusting the `depth` parameter when calling
`fractal_tree`. For example:

↪→
↪→

- `library_call('fractal_tree', base_length=1.0,
base_radius=0.1, depth=3)` for a simpler tree↪→

- `library_call('fractal_tree', base_length=1.0,
base_radius=0.1, depth=7)` for a more complex
tree

↪→
↪→

This shape demonstrates the power of recursive
functions in creating complex, naturalistic
forms from simple rules.

↪→
↪→

Example 4. Input scene description: "Rene Magritte
The Son of Man". Input editing instruction: "move
the apple to the left".

Output:

Here's the minimally edited program that moves the
apple to the left:↪→

```python
from helper import *

"""
Move the apple to left
"""

@register()
def suit(width: float, height: float, depth: float)

-> Shape:↪→
return primitive_call('cube', color=(0.1, 0.1,

0.1), shape_kwargs={'scale': (width,
height, depth)})

↪→
↪→

@register()
def head(radius: float) -> Shape:

return primitive_call('sphere', color=(0.9,
0.75, 0.65), shape_kwargs={'radius':
radius})

↪→
↪→

@register()
def apple(radius: float) -> Shape:

return primitive_call('sphere', color=(0.8,
0.1, 0.1), shape_kwargs={'radius': radius})↪→

@register()
def hat(radius: float, height: float) -> Shape:

brim = primitive_call('cylinder', color=(0.1,
0.1, 0.1), shape_kwargs={'radius': radius *
1.2, 'p0': (0, 0, 0), 'p1': (0, height *
0.1, 0)})

↪→
↪→
↪→
top = primitive_call('cylinder', color=(0.1,

0.1, 0.1), shape_kwargs={'radius': radius,
'p0': (0, height * 0.1, 0), 'p1': (0,
height, 0)})

↪→
↪→
↪→
return concat_shapes(brim, top)

@register()
def son_of_man() -> Shape:

Create the suit
suit_shape = library_call('suit', width=0.6,

height=1.0, depth=0.3)↪→

Create the head
head_shape = library_call('head', radius=0.15)
head_shape = transform_shape(head_shape,

translation_matrix((0, 0.6, 0)))↪→

Create the apple
apple_shape = library_call('apple',

radius=0.08)↪→
apple_shape = transform_shape(apple_shape,

translation_matrix((-0.15, 0.62, 0.15))) #
Changed x-coordinate to -0.15

↪→
↪→

Create the hat
hat_shape = library_call('hat', radius=0.12,

height=0.15)↪→
hat_shape = transform_shape(hat_shape,

translation_matrix((0, 0.78, 0)))↪→

Combine all shapes
figure = concat_shapes(suit_shape, head_shape,

apple_shape, hat_shape)↪→

Add a slight tilt to the figure
figure_center = compute_shape_center(figure)
tilted_figure = transform_shape(figure,

rotation_matrix(0.1, (1, 0, 0),
figure_center))

↪→
↪→

return tilted_figure
```

The only change made to the program is in the
`son_of_man()` function. Specifically, the
translation of the apple shape has been
modified. The x-coordinate in the translation
matrix for the apple has been changed from 0 to
-0.15:

↪→
↪→
↪→
↪→
↪→

```python
apple_shape = transform_shape(apple_shape,

translation_matrix((-0.15, 0.62, 0.15))) #
Changed x-coordinate to -0.15

↪→
↪→
```

This change moves the apple to the left by 0.15
units in the scene's coordinate system, where
the negative x-direction corresponds to the
left side of the figure. The y and z
coordinates remain the same, keeping the apple
at the same height and depth relative to the
face.

↪→
↪→
↪→
↪→
↪→
↪→

Example 5. Input scene description: "Paul Klee
Castle and Sun". Input editing instruction:
"change all castles to be the middle
one".

Output:

Here's the minimally edited program to change all
castles to be the middle one:↪→

```python
from helper import *

"""
Change all castles to be the middle one
"""

@register()
def rectangle(width: float, height: float, color:

tuple[float, float, float]) -> Shape:↪→
return primitive_call('cube',

shape_kwargs={'scale': (width, height,
0.01)}, color=color)

↪→
↪→

@register()
def triangle(base: float, height: float, color:

tuple[float, float, float]) -> Shape:↪→
triangle_shape = primitive_call('cube',

shape_kwargs={'scale': (base, height,
0.01)}, color=color)

↪→
↪→
return transform_shape(triangle_shape,

translation_matrix((0, height/2, 0)))↪→

@register()
def sun(radius: float) -> Shape:

return primitive_call('sphere',
shape_kwargs={'radius': radius},
color=(1.0, 0.8, 0))

↪→
↪→

@register()
def castle_block(width: float, height: float,

color: tuple[float, float, float]) -> Shape:↪→
return library_call('rectangle', width=width,

height=height, color=color)↪→

@register()
def castle_tower(width: float, height: float,

color: tuple[float, float, float]) -> Shape:↪→
tower = library_call('castle_block',

width=width, height=height, color=color)↪→
roof = library_call('triangle', base=width,

height=width/2, color=color)↪→
tower_height = compute_shape_sizes(tower)[1]
return concat_shapes(

tower,
transform_shape(roof,

translation_matrix((0, tower_height,
0)))

↪→
↪→

)

@register()
def castle() -> Shape:

base = library_call('castle_block', width=0.8,
height=0.4, color=(0.5, 0.5, 0.7))↪→

center_tower = library_call('castle_tower',
width=0.25, height=0.7, color=(0.5, 0.5,
0.7))

↪→
↪→

base_width = compute_shape_sizes(base)[0]
center_tower_width =

compute_shape_sizes(center_tower)[0]↪→

return concat_shapes(
base,
transform_shape(center_tower,

translation_matrix((-base_width/4, 0.4,
0))),

↪→
↪→
transform_shape(center_tower,

translation_matrix((base_width/4, 0.4,
0))),

↪→
↪→
transform_shape(center_tower,

translation_matrix((0, 0.4, 0)))↪→
)

@register()
def background() -> Shape:

return library_call('rectangle', width=2,
height=2, color=(0.95, 0.95, 0.8))↪→

@register()
def castle_and_sun() -> Shape:

bg = library_call('background')
castle_shape = library_call('castle')
sun_shape = library_call('sun', radius=0.15)

return concat_shapes(
bg,
transform_shape(castle_shape,

translation_matrix((0, -0.3, 0.01))),↪→
transform_shape(sun_shape,

translation_matrix((0.5, 0.5, 0.02)))↪→
)

```

In this edited version, I made the following
changes to fulfill the instruction "Change all
castles to be the middle one":

↪→
↪→

1. In the `castle()` function, I removed the
`left_tower` and `right_tower` variables.↪→

2. I changed the `base` color to match the center
tower's color: `(0.5, 0.5, 0.7)`.↪→

3. I replaced the left and right towers with two
additional center towers.↪→

4. I adjusted the positioning of the three center
towers to be evenly spaced across the base.↪→

Now, when the `castle_and_sun()` function is
called, it will create a scene where all the
castle towers are identical to the original
middle tower, fulfilling the given instruction.

↪→
↪→
↪→

Example 6. Input scene description: "7 different
sized Russian nesting dolls lined up".
Input editing instruction: "Shuffle order and
rearrange to a small semicircle".

Output:

Here's the minimally edited program to change all
castles to be the middle one:↪→

```python
from helper import *

"""
Change all castles to be the middle one
"""

@register()
def rectangle(width: float, height: float, color:

tuple[float, float, float]) -> Shape:↪→
return primitive_call('cube',

shape_kwargs={'scale': (width, height,
0.01)}, color=color)

↪→
↪→

@register()
def triangle(base: float, height: float, color:

tuple[float, float, float]) -> Shape:↪→
triangle_shape = primitive_call('cube',

shape_kwargs={'scale': (base, height,
0.01)}, color=color)

↪→
↪→
return transform_shape(triangle_shape,

translation_matrix((0, height/2, 0)))↪→

@register()
def sun(radius: float) -> Shape:

return primitive_call('sphere',
shape_kwargs={'radius': radius},
color=(1.0, 0.8, 0))

↪→
↪→

@register()
def castle_block(width: float, height: float,

color: tuple[float, float, float]) -> Shape:↪→
return library_call('rectangle', width=width,

height=height, color=color)↪→

@register()
def castle_tower(width: float, height: float,

color: tuple[float, float, float]) -> Shape:↪→
tower = library_call('castle_block',

width=width, height=height, color=color)↪→
roof = library_call('triangle', base=width,

height=width/2, color=color)↪→
tower_height = compute_shape_sizes(tower)[1]
return concat_shapes(

tower,
transform_shape(roof,

translation_matrix((0, tower_height,
0)))

↪→
↪→

)

@register()
def castle() -> Shape:

base = library_call('castle_block', width=0.8,
height=0.4, color=(0.5, 0.5, 0.7))↪→

center_tower = library_call('castle_tower',
width=0.25, height=0.7, color=(0.5, 0.5,
0.7))

↪→
↪→

base_width = compute_shape_sizes(base)[0]
center_tower_width =

compute_shape_sizes(center_tower)[0]↪→

return concat_shapes(
base,
transform_shape(center_tower,

translation_matrix((-base_width/4, 0.4,
0))),

↪→
↪→
transform_shape(center_tower,

translation_matrix((base_width/4, 0.4,
0))),

↪→
↪→
transform_shape(center_tower,

translation_matrix((0, 0.4, 0)))↪→
)

@register()
def background() -> Shape:

return library_call('rectangle', width=2,
height=2, color=(0.95, 0.95, 0.8))↪→

@register()
def castle_and_sun() -> Shape:

bg = library_call('background')
castle_shape = library_call('castle')
sun_shape = library_call('sun', radius=0.15)

return concat_shapes(
bg,
transform_shape(castle_shape,

translation_matrix((0, -0.3, 0.01))),↪→
transform_shape(sun_shape,

translation_matrix((0.5, 0.5, 0.02)))↪→
)

```

In this edited version, I made the following
changes to fulfill the instruction "Change all
castles to be the middle one":

↪→
↪→

1. In the `castle()` function, I removed the
`left_tower` and `right_tower` variables.↪→

2. I changed the `base` color to match the center
tower's color: `(0.5, 0.5, 0.7)`.↪→

3. I replaced the left and right towers with two
additional center towers.↪→

4. I adjusted the positioning of the three center
towers to be evenly spaced across the base.↪→

Now, when the `castle_and_sun()` function is
called, it will create a scene where all the
castle towers are identical to the original
middle tower, fulfilling the given instruction.

↪→
↪→
↪→

F.2.3. Text-Conditioned 4D Generation

Example 1. Input: "carousel with a small
canopy".

Output:

Here's a program that creates a carousel with a
small canopy using the provided `helper.py`:↪→

```python
from helper import *

"""
carousel with a small canopy
"""

@register()
def carousel_base() -> Shape:

base = primitive_call('cylinder',
shape_kwargs={'radius': 2, 'p0': (0, 0, 0),
'p1': (0, 0.2, 0)}, color=(0.6, 0.4, 0.2))

↪→
↪→
return base

@register()
def carousel_platform() -> Shape:

platform = primitive_call('cylinder',
shape_kwargs={'radius': 1.8, 'p0': (0, 0.2,
0), 'p1': (0, 0.3, 0)}, color=(0.8, 0.8,
0.8))

↪→
↪→
↪→
return platform

@register()
def carousel_pole() -> Shape:

pole = primitive_call('cylinder',
shape_kwargs={'radius': 0.1, 'p0': (0, 0.3,
0), 'p1': (0, 3, 0)}, color=(0.7, 0.7,
0.7))

↪→
↪→
↪→
return pole

@register()
def carousel_horse() -> Shape:

body = primitive_call('cylinder',
shape_kwargs={'radius': 0.2, 'p0': (0, 0,
-0.4), 'p1': (0, 0, 0.4)}, color=(1, 1, 1))

↪→
↪→
head = primitive_call('sphere',

shape_kwargs={'radius': 0.15}, color=(1, 1,
1))

↪→
↪→
head = transform_shape(head,

translation_matrix((0, 0.2, -0.5)))↪→
legs = loop(4, lambda i: transform_shape(

primitive_call('cylinder',
shape_kwargs={'radius': 0.05, 'p0': (0,
0, 0), 'p1': (0, -0.5, 0)}, color=(1,
1, 1)),

↪→
↪→
↪→
translation_matrix((0.15 * (-1 if i % 2 ==

0 else 1), -0.2, 0.3 * (-1 if i < 2
else 1)))

↪→
↪→

))
horse = concat_shapes(body, head, legs)
return transform_shape(horse,

translation_matrix((0, 1, 0)))↪→

@register()
def carousel_horses() -> Shape:

return loop(4, lambda i: transform_shape(

library_call('carousel_horse'),
rotation_matrix(i * math.pi / 2, (0, 1, 0),

(0, 0, 0)) @ translation_matrix((1.5,
0, 0))

↪→
↪→

))

@register()
def canopy() -> Shape:

cone = primitive_call('cylinder',
shape_kwargs={'radius': 2, 'p0': (0, 3, 0),
'p1': (0, 3.5, 0)}, color=(1, 0.5, 0.5))

↪→
↪→
top = primitive_call('sphere',

shape_kwargs={'radius': 0.1}, color=(1,
0.7, 0.7))

↪→
↪→
top = transform_shape(top,

translation_matrix((0, 3.6, 0)))↪→
return concat_shapes(cone, top)

@register()
def carousel() -> Shape:

base = library_call('carousel_base')
platform = library_call('carousel_platform')
pole = library_call('carousel_pole')
horses = library_call('carousel_horses')
canopy_shape = library_call('canopy')
return concat_shapes(base, platform, pole,

horses, canopy_shape)↪→

@register_animation()
def carousel_animation() -> Generator[Shape, None,

None]:↪→
total_frames = 60
for frame in range(total_frames):

angle = frame * 2 * math.pi / total_frames
rotated_carousel = transform_shape(

library_call('carousel'),
rotation_matrix(angle, (0, 1, 0), (0,

0, 0))↪→
)
yield rotated_carousel

```

This program creates a carousel with a small
canopy. Here's a breakdown of the components:↪→

1. `carousel_base`: A cylindrical base for the
carousel.↪→

2. `carousel_platform`: A slightly smaller cylinder
on top of the base.↪→

3. `carousel_pole`: A central pole for the
carousel.↪→

4. `carousel_horse`: A simple horse shape made from
cylinders and a sphere.↪→

5. `carousel_horses`: Four horses arranged around
the central pole.↪→

6. `canopy`: A small conical canopy with a
spherical top.↪→

7. `carousel`: Combines all the components to
create the complete carousel.↪→

8. `carousel_animation`: An animation that rotates
the carousel.↪→

The carousel is designed with a modular approach,
allowing easy modifications and adjustments to
individual components. The animation function
rotates the entire carousel, simulating its
movement.

↪→
↪→
↪→
↪→

Example 2. Input: "solar system model".
Output:

Here's a program that creates a simple solar system
model using the provided `helper.py`:↪→

```python
from helper import *

"""
solar system model
"""

@register()
def sun() -> Shape:

return primitive_call('sphere',
shape_kwargs={'radius': 0.5}, color=(1,
0.7, 0))

↪→
↪→

@register()
def planet(radius: float, color: tuple[float,

float, float]) -> Shape:↪→
return primitive_call('sphere',

shape_kwargs={'radius': radius},
color=color)

↪→
↪→

@register()
def orbit(radius: float) -> Shape:

points = 100
orbit_shape = []
for i in range(points):

angle = 2 * math.pi * i / points
x = radius * math.cos(angle)
z = radius * math.sin(angle)
orbit_point = primitive_call('sphere',

shape_kwargs={'radius': 0.01},
color=(0.5, 0.5, 0.5))

↪→
↪→
orbit_shape.append(transform_shape(orbit_p ⌋

oint, translation_matrix((x, 0,
z))))

↪→
↪→

return concat_shapes(*orbit_shape)

@register()
def solar_system() -> Shape:

sun_shape = library_call('sun')
mercury_orbit = library_call('orbit',

radius=1.5)↪→
venus_orbit = library_call('orbit', radius=2.5)
earth_orbit = library_call('orbit', radius=3.5)
mars_orbit = library_call('orbit', radius=4.5)

return concat_shapes(
sun_shape,
mercury_orbit,
venus_orbit,
earth_orbit,
mars_orbit

)

@register_animation()
def solar_system_animation() -> Generator[Shape,

None, None]:↪→
total_frames = 120

for frame in range(total_frames):
t = frame / total_frames

sun = library_call('sun')

mercury = transform_shape(
library_call('planet', radius=0.1,

color=(0.7, 0.7, 0.7)),↪→
rotation_matrix(t * 4 * math.pi, (0, 1,

0), (0, 0, 0)) @
translation_matrix((1.5, 0, 0))

↪→
↪→

)

venus = transform_shape(
library_call('planet', radius=0.15,

color=(0.9, 0.7, 0.4)),↪→
rotation_matrix(t * 3 * math.pi, (0, 1,

0), (0, 0, 0)) @
translation_matrix((2.5, 0, 0))

↪→
↪→

)

earth = transform_shape(
library_call('planet', radius=0.17,

color=(0.2, 0.4, 0.8)),↪→
rotation_matrix(t * 2 * math.pi, (0, 1,

0), (0, 0, 0)) @
translation_matrix((3.5, 0, 0))

↪→
↪→

)

mars = transform_shape(
library_call('planet', radius=0.13,

color=(0.8, 0.3, 0.1)),↪→
rotation_matrix(t * 1.5 * math.pi, (0,

1, 0), (0, 0, 0)) @
translation_matrix((4.5, 0, 0))

↪→
↪→

)

solar_system = library_call('solar_system')

yield concat_shapes(solar_system, sun,
mercury, venus, earth, mars)↪→

```

This program creates a simple solar system model
with the following components:↪→

1. A sun at the center.
2. Four planets (Mercury, Venus, Earth, and Mars)

orbiting around the sun.↪→
3. Orbit paths for each planet.

The `solar_system_animation` function generates an
animation of the planets orbiting around the
sun. Each planet moves at a different speed,
simulating their relative orbital periods.

↪→
↪→
↪→

Here's a breakdown of the functions:

- `sun()`: Creates a yellow sphere representing the
sun.↪→

- `planet(radius, color)`: Creates a sphere with
the given radius and color, representing a
planet.

↪→
↪→
- `orbit(radius)`: Creates a circular orbit path at

the given radius.↪→
- `solar_system()`: Combines the sun and orbit

paths into a static solar system model.↪→
- `solar_system_animation()`: Animates the planets

orbiting around the sun.↪→

The animation runs for 120 frames, with each planet
completing a different fraction of its orbit in
that time. The sun remains stationary at the
center while the planets rotate around it.

↪→
↪→
↪→

Example 3. Input: "a toy wind turbine".
Output:

Here's a program to create a toy wind turbine using
the provided `helper.py`:↪→

```python
from helper import *

"""
a toy wind turbine
"""

@register()
def turbine_base() -> Shape:

base = primitive_call('cylinder',
shape_kwargs={'radius': 0.2, 'p0': (0, 0,
0), 'p1': (0, 2, 0)}, color=(0.5, 0.5,
0.5))

↪→
↪→
↪→
return base

@register()
def turbine_nacelle() -> Shape:

nacelle = primitive_call('cube',
shape_kwargs={'scale': (0.6, 0.4, 0.8)},
color=(0.7, 0.7, 0.7))

↪→
↪→
return transform_shape(nacelle,

translation_matrix((0, 2.2, 0)))↪→

@register()
def turbine_blade() -> Shape:

blade = primitive_call('cube',
shape_kwargs={'scale': (0.1, 1.5, 0.05)},
color=(1, 1, 1))

↪→
↪→
return transform_shape(blade,

translation_matrix((0, 0.75, 0)))↪→

@register()
def turbine_rotor() -> Shape:

return loop(3, lambda i: transform_shape(
library_call('turbine_blade'),
rotation_matrix(i * 2 * math.pi / 3, (0, 0,

1), (0, 0, 0))↪→
))

@register()
def wind_turbine() -> Shape:

base = library_call('turbine_base')
nacelle = library_call('turbine_nacelle')
rotor = transform_shape(library_call('turbine_ ⌋

rotor'), translation_matrix((0, 2.2,
0.4)))

↪→
↪→
return concat_shapes(base, nacelle, rotor)

@register_animation()
def wind_turbine_animation() -> Generator[Shape,

None, None]:↪→
total_frames = 60

for frame in range(total_frames):
angle = frame * 2 * math.pi / total_frames

base = library_call('turbine_base')
nacelle = library_call('turbine_nacelle')
rotor = transform_shape(

library_call('turbine_rotor'),
rotation_matrix(angle, (0, 0, 1), (0,

2.2, 0.4)) @ translation_matrix((0,
2.2, 0.4))

↪→
↪→

)

yield concat_shapes(base, nacelle, rotor)
```

This program creates a toy wind turbine with the
following components:↪→

1. `turbine_base`: A cylindrical base for the
turbine.↪→

2. `turbine_nacelle`: A cuboid representing the
nacelle (housing) at the top of the turbine.↪→

3. `turbine_blade`: A single blade of the turbine.
4. `turbine_rotor`: Three blades arranged in a

rotor configuration.↪→
5. `wind_turbine`: The complete wind turbine,

combining all the components.↪→

The `wind_turbine_animation` function creates an
animation of the turbine with rotating blades.
It generates 60 frames, rotating the rotor by a
full 360 degrees over the course of the
animation.

↪→
↪→
↪→
↪→


