
Appendix

This supplementary material offers additional results,
comprehensive dataset information, and thorough analyses
that bolster the findings and conclusions outlined in the
main text. It is organized as follows:
• Additional qualitative results.
• User Study with DiT-based methods.
• Data pre-processing method.
• Dataset details, regarding total quantity, total durations,

etc.
• Prompt refinement method.
• Motion VAE training.

1. Qualitative Comparisons

While the main text focuses on quantitative comparisons
with the motion-controllable video generation models and
ablation studies on different designs for Trajectory Extrac-
tor and Motion-guidance Fuser, here we provide further vi-
sual comparisons.

1.1. Compare with OpenSora

Despite OpenSora’s impressive accomplishments, it faces
challenges when creating long videos featuring complex
motions, such as simultaneous movement of multiple ob-
jects, swinging, or circling. This often leads to incoher-
ent or distorted foreground objects, negatively impacting
visual quality. To our delight, we discovered that incor-
porating appropriate trajectory control into the DiT model
offers a more effective constraining signal. This improve-
ment markedly enhances video fluidity and preserves object
fidelity, as demonstrated in Figure 2.

In scenarios where a teddy bear is oscillating side to
side on a skateboard or a rose is swirling in circular mo-
tions, OpenSora, which relies solely on textual directives
for motion control, exhibits noticeable object deformations.
In contrast, Tora excels at maintaining the inherent shape
of the objects. Additionally, when managing the motion
of multiple entities, such as a pair of jellyfish—one mov-
ing upward while the other moves downward, OpenSora
demonstrates noticeable flickering, underscoring its limi-
tations in handling complex movements. In conclusion,
the integration of Tora’s motion signaling mechanism en-
hances both the controllability and stability of the synthe-
sized video output.

1.2. Comparison of Different Trajectory Compres-

sion Methods

We train our proposed trajectory extractor using the vari-
ous trajectory compression methodologies previously dis-
cussed. The comparisons of these methods are visually il-
lustrated in Figure 3.

In key-frame sampling, while it successfully captures es-
sential motion, it frequently leads to misalignment between
video patches and motion patches, especially during rapid
motion sequences. This misalignment hinders the gener-
ated objects from accurately tracking their trajectories, neg-
atively impacting visual fluidity and overall quality. On
the other hand, average pooling smooths out minor vari-
ations, resulting in a more consistent motion representa-
tion. However, in complex trajectories, such as S-shaped
turns where consecutive frame directions are inconsistent,
this approach may introduce artifacts because the physi-
cal relevance of optical flow decreases. In contrast, our
proposed 3D VAE approach effectively compresses trajec-
tory information into the video’s latent space. By training
the 3D VAE on the large dataset with flow annotations, it
successfully extracts the most relevant motion features for
guidance, preserving the movement of successive frames
to a significant extent. As evidenced in the results, this
method significantly enhances the fluidity and coherence
of the generated movements, producing visually compelling
sequences that closely resemble natural motion.

2. User Study with DiT-based methods

We conduct a user study to compare OpenSora-v1.2,
CogVideoX-2B [11], Vidu [2], and Kling v1.0 [1], assess-
ing the effectiveness of our method using our evaluation
dataset. 10 human volunteers participate in evaluating qual-
ity based on three criteria: physics simulation, sensory qual-
ity, and instruction adherence. For Tora, participants draw
appropriate trajectories in response to given text prompts.
The experiment employs a pairwise comparison approach,
where evaluators choose the superior output from each pair
of generated results based on the same input. The resulting
win rates appear in Table 1. Our method outperforms both
OpenSora and CogVideoX-2B across all metrics, affirming
the superiority of our proposed modules and data process-
ing methods. Compared to the closed-source method, Vidu,
we achieve competitive results. Kling demonstrates remark-
able capabilities, and we hope that Tora can work to close
the performance gap in future iterations.

Model Phys. Simu. Sens. Qual. Inst. Foll.

Tora vs. OpenSora-v1.2 71% 61% 64%
Tora vs. CogVideoX 53% 56% 52%

Tora vs. Vidu 54% 48% 47%
Tora vs. Kling 45% 43% 41%

Table 1. Win rates of Tora compared to OpenSora-v1.2,
CogVideoX, Vidu, and Kling in terms of Physics Simulation, Sen-
sory Quality, and Instruction Following.
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Prompt: Two jellyfish gracefully swimming underwater. The left
one moves upward while the right one moves downward.

Prompt: A teddy bear gently oscillating side to side on a skateboard. The scene is set against a picturesque, dreamy landscape, withdistant
trees silhouetted against a starry sky. Soft, twinkling lights from a nearby village or park create a magical ambiance, enhancing the 

whimsical charm of the teddy bear's playful ride.
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Prompt: A rose gracefully swirling in circular motions, captured
through a soft-focus lens, with the vibrant backdrop of a 

bustling city park.

Figure 2. Qualitative comparison between Tora and OpenSora. All results are generated under the same text and image conditions. Tora
employs an appropriate trajectory that simulates real-world physics, leading to more coherent and stable motion.

3. Data Pre-processing

During the processing of the video datasets, constructing
a high-quality training set is crucial as it significantly im-
pacts the quality of the generated videos. The following is a
detailed description of our data processing workflow, which
includes steps such as invalid videos removal, resolution fil-
tering, camera motion filtering, and assessing the degree of
object motion.

Initially, during the dataset preparation phase, we re-
move invalid videos. This step aims to identify and discard
videos that do not meet our established criteria, including
those with encoding errors, a duration of zero, or low qual-
ity. We identify encoding errors and zero-duration videos
by directly decoding them. Furthermore, we predict both
the aesthetic score1 and the optical flow score [9] for each

1https://github.com/christophschuhmann/improved-aesthetic-predictor

video. A video is deemed valid only if its aesthetic score
exceeds 5.5 and its flow score is greater than 3.

Next, we perform resolution filtering. To ensure the ef-
fectiveness of subsequent study, we establish a minimum
resolution standard of 720p. By checking the resolution
of each video, we can eliminate those that fall below this
threshold, thereby ensuring that the videos in our dataset
possess adequate clarity and detail.

Subsequently, we perform camera motion filtering using
a camera motion detector2 and a motion segmentor [12] to
filter out videos with significant camera movement, which
may distort the model’s ability to focus on the motion of
the primary subjects. More specifically, the zoom detec-
tion threshold is set between 0.4 and 0.6. The detected
camera movement angles, calculated based on the back-
ground from the motion segmentation results, are valid as

2https://github.com/antiboredom/camera-motion-detector
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Prompt: A red helium balloon floating slowly up to the sky over a desert.

Prompt: Feather floats gently down in a quiet meadow.

Figure 3. Generated videos employing different trajectory compression methods: (a) Sampling Keyframe; (b) Average Pooling; (c) 3D
VAE.

follows:[0�, 20�], [160�, 200�], [340�, 360�].
Finally, we analyze the magnitude score of the optical

flow within the foreground, excluding those scenes that are
mostly static or exhibit minimal movement. Moreover, dra-
matic object motions in some videos can cause significant
optical flow deviations, interfering with trajectory training.
Consequently, we retain these videos with a probability of
(1� flow score/100).

Through these rigorous filtering and processing steps, we
successfully construct a high-quality video dataset suitable
for subsequent training, providing a solid foundation for our
study.

4. Dataset Details

This section offers an overview of the dataset used in this
study, covering its origin and composition. We employ his-
tograms and descriptive statistics to illustrate the dataset’s
structure and distribution.

4.1. Training Data

The video data is sourced from the Panda-70M subset,
Mixart, and internal videos. We initially collect 2.6M
videos and apply the data preprocessing pipeline to filter
the content, resulting in 631k eligible videos for training.



(a) Histogram of Caption Lengths. (b) Histogram of Video Durations.

resolution
# frames

51 102 204 408

144p 50 25 12 6
240p 20 10 5 2
360p 8 4 2 1
480p 4 2 1 -
720p 2 1 - -

(c) The training batch size of every bucket (res-
olution, duration).

Figure 4. Overview of the training data distributions and batch sizes.

An overview of the training dataset is presented in Table 2,
which details the durations, resolution and FPS.

# Videos Clips 631053
Total Durations (hours) 2952.93
Average Shorter Edge Length 965.11
Average FPS 29.23

Table 2. Statistical information about the training data.

Additionally, Table 3 summarizes the mean and standard
deviation for the durations, number of frames, and caption
lengths. We also present histogram to show the distribution
of the caption lengths and the durations of all video clips,
as shown in the Figure 4a and Figure 4b.

mean std

Durations (seconds) 16.85 19.58
#Frames 506.22 644.38
Caption Length (#word) 125.52 24.22

Table 3. Statistics of training set, regarding durations, number of
frames, and caption lengths.

Drawing inspiration from OpenSora, we employ a multi-
scale and mixed-duration training strategy, which involves
training videos of various resolutions and lengths together.
Specifically,we establish predefined buckets, each defined
by a unique combination of (video resolution, duration).
Videos are then assigned to the appropriate bucket accord-
ing to their specific attributes. Note that videos of any as-
pect ratio will fall into these buckets if their total pixel count
is within the specified statistical intervals. The parameter
settings for the buckets adhere to the principle that lower
resolutions correspond to longer durations, enabling Tora
to adapt to videos of varying lengths. Notably, our prepro-
cessing steps ensure that the shorter edge of each training
video exceeds 720 pixels. To enable training across various

scales, we shuffle the dataset and randomly select videos
for downsampling to lower resolutions. Additionally, we
employ different batch sizes for each bucket to balance the
GPU load. The details of the buckets are presented in Fig-
ure 4c.

4.2. Evaluation Data

Our evaluation dataset is primarily sourced from video ob-
ject segmentation datasets [6, 7, 10], which offer robust ob-
ject motion critical for our analysis. To enhance the quality
of our evaluation, we implement a camera motion filtering
technique to select videos where the camera remains pre-
dominantly stable. This filtering process allows us to con-
centrate on where object motion is distinctly pronounced,
thereby improving the reliability of our assessments. For
each frame, we utilize the center of the annotated object
masks as trajectory points, providing precise references for
evaluating motion dynamics. Figure 5 presents several ex-
amples from our evaluation dataset, highlighting the diver-
sity and relevance of the selected video sequences.

5. Prompt Refinement

We encourage users to provide detailed text prompts to
achieve satisfactory video results. To ensure consistency
in the distribution of text prompts during both training and
testing phases, we utilize GPT-4o to refine simple testing
prompts. The process of learning refined prompts for GPT-
4o involves two key components. The first component is
the task description, which clearly outlines the objectives
for the model in generating enhanced content:
You need to refine user’s input

prompt. The user’s input prompt is

used for video generation task. You

need to refine the user’s prompt to

make it more suitable for the task.

Here are some examples of refined

prompts: #
a close-up shot of a woman applying

makeup. she is using a black brush to



Figure 5. Visualization of Our Evaluation Dataset, highlighting 0%, 20%, 40%, 60%, 80%, and 100% of the total duration. Each center
point of the annotated object masks is treated as a trajectory point. The number of trajectories in the tested video matches the number of
annotated objects.

apply a dark powder to her face. the

woman has blonde hair and is wearing

a black top. the background is black,

which contrasts with her skin tone and

the makeup. the focus is on her face

and the brush, with the rest of her

body and the background being out of

focus. the lighting is soft and even,

highlighting the texture of the makeup

and the woman’s skin. there are no

texts or other objects in the video.

the woman’s expression is neutral, and

she is looking directly at the camera.

the video does not contain any action,

as it is a still shot of a woman

applying makeup. the relative position

of the woman and the brush is such that

the brush is in her hand and is being

used to apply the makeup to her face.

the video does not contain any other

objects or actions. the woman is the

only person in the video, and she is

the main subject. the video does not

contain any sound. the description

is based on the visible content of

the video and does not include any

assumptions or interpretations. #
a professional setting where a woman is

presenting a slide from a presentation.

she is standing in front of a projector

screen, which displays a bar chart.

the chart is colorful, with bars of

different heights, indicating some

sort of data comparison. the woman

is holding a pointer, which she uses

to highlight specific parts of the

chart. she is dressed in a white

blouse and black pants, and her hair

is styled in a bun. the room has a

modern design, with a sleek black floor

and a white ceiling. the lighting is

bright, illuminating the woman and

the projector screen. the focus of

the image is on the woman and the

projector screen, with the background

being out of focus. there are no texts

visible in the image. the relative

positions of the objects suggest that



the woman is the main subject of the

image, and the projector screen is the

object of her attention. the image

does not provide any information about

the content of the presentation or the

context of the meeting. #
a serene scene in a park. the sun

is shining brightly, casting a warm

glow on the lush green trees and the

grassy field. the camera is positioned

low, looking up at the towering trees,

which are the main focus of the

image. the trees are dense and full

of leaves, creating a canopy of green

that fills the frame. the sunlight

filters through the leaves, creating a

beautiful pattern of light and shadow

on the ground. the overall atmosphere

of the video is peaceful and tranquil,

evoking a sense of calm and relaxation.

#
a moment in a movie theater. a

couple is seated in the middle of the

theater, engrossed in the movie they

are watching. the man is dressed in a

casual outfit, complete with a pair of

sunglasses, while the woman is wearing

a cozy sweater. they are seated on

a red theater seat, which stands out

against the dark surroundings. the

theater itself is dimly lit, with the

screen displaying the movie they are

watching. the couple appears to be

enjoying the movie, their attention

completely absorbed by the on-screen

action. the theater is mostly empty,

with only a few other seats visible

in the background. the video does not

contain any text or additional objects.

the relative positions of the objects

are such that the couple is in the

foreground, while the screen and the

other seats are in the background. the

focus of the video is clearly on the

couple and their shared experience of

watching a movie in a theater. #
a scene where a person is examining

a dog. the person is wearing a blue

shirt with the word "volunteer" printed

on it. the dog is lying on its side,

and the person is using a stethoscope

to listen to the dog’s heartbeat. the

dog appears to be a golden retriever

and is looking directly at the camera.

the background is blurred, but it seems

to be an indoor setting with a white

wall. the person’s focus is on the

dog, and they seem to be checking its

health. the dog’s expression is calm,

and it seems to be comfortable with the

person’s touch. the overall atmosphere

of the video is calm and professional.

#
The refined prompt should pay attention

to all objects in the video. The

description should be useful for

AI to re-generate the video. The

description should be no more than six

sentences. The refined prompt should

be in English.

Following that, GPT-4o is supplied with the testing cap-
tions for processing. This allows it to refine the prompts
based on the initial task description, ensuring that the pro-
vided captions are more detailed and aligned with our ob-
jectives:
Generate the refined prompts for

following inputs: #
A man rides on a huge fish, flying from

the water into the sky. #
Two Jedi cats are fighting with each

other in the forest. #
A polar bear with a black hat is

walking on the Great Wall. #
A woman and a golden retriever are

playing on the beach at sunset. #
Two roses sway together before a

snow-covered mountain range.

6. Motion VAE Training

Given the absence of pre-existing networks tailored for
video optical flow compression, training such a network
from scratch presents significant challenges. Directly trans-
ferring the motion vectors to the image domain and apply-
ing a pretrained 3D VAE may hinder the model’s ability to
effectively encode motion features, primarily due to domain
discrepancies. To overcome this issue, we refine a motion-
specific 3D VAE that is initialized from a pretrained model.
Specifically, our motion 3D VAE is specifically initialized
using the architecture of OpenSora’s VAE, which adapts the
structure of Magvit-v2. This VAE has a substantial param-
eter count of 384 million, effectively leveraging the capa-
bilities of a well-established network. Our training data is
sourced from a combination of datasets annotated with op-
tical flow information [3–5, 8]. We fine-tune the motion 3D
VAE for 200,000 iterations with a batch size of 1. The train-
ing video size is set to a random number of frames, capped



at 34. This setting aligns with the OpenSora video VAE,
improving compatibility between the motion VAE and the
video VAE and ensuring a cohesive training process. We
utilize PSNR, SSIM and Trajectory Error to evaluate recon-
struction quality and motion-controllable ability. The per-
formance differences between the pure video VAE and our
fine-tuned model are presented in Table 4.

Model PSNR" SSIM" TrajError#
Pure Video VAE 27.34 0.842 17.09

Our VAE 28.76 0.860 14.25

Table 4. The performance comparison of different 3D VAE.
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