Towards Fine-Grained Interpretability:
Counterfactual Explanations for Misclassification with Saliency Partition

Supplementary Material

6. Algorithm

The counterfactual generation procedure is depicted in Al-
gorithm 1. In main text and in the algorithm, some super-
scripts and subscripts are omitted for simplicity. h(®) and
h both refer to the original feature map after feature extrac-
tion.

7. Performance evaluation

7.1. Evaluation on the Compact Activation Score
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Figure 8. A comparative evaluation of the performance of multi-
ple methods in generating 50 attributive explanation based on the
Compact Activation Score (£) metric.

As shown in Fig. 8, we randomly selected explanations
generated for 50 misclassified samples using different attri-
bution methods and evaluated them on a fine-grained met-
ric, £. The results show the distribution of £ scores for the
50 explanations generated by each method. For our gen-
erated explanations, the scores were primarily concentrated
within the range of 8 to 12, which corresponds to the highest
scores.

7.2. Evaluating the interpretability of comparative
explanation methods

To evaluate the quality of explanations generated by multi-
ple comparative methods, we conducted assessments across
five different aspects for fine-grained level: Locality (Loc.),
Semantic relevance (Sem.), Stability (Stab.), Log of Odds
(LOdds), and Area Under the Curve (AUC). As shown
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Figure 9. Performance evaluation results of multiple explanation
methods across five aspects.

in Fig. 9, our method demonstrates excellent performance
across five metrics in fine-grained level comparative expla-
nations.

@ Threshold = 20

Qe
FY ©0000 !0

u
=3
=3

Total Time (s)

Figure 10. The impact of U set threshold on the number of expla-
nations generated and the total time consumed.

8. Ablation Study

8.1. Threshold for the number of selected elements
in set U

To explore the impact of selecting the threshold for the num-
ber of feature units in U set on the overall framework’s per-
formance, we analyze the relationship between each thresh-
old and the success rate of generating explanations, as well



Algorithm 1: Counterfactual generation procedure of the proposed FG-VCE framework.

Input: A misclassified sample I and a correctly classified sample set U = {u1, uga, - - - }, both from class a. A
pre-trained feature extractor f with a classifier f.. A set of of spatially localized kernels G.
Output: The feature map h* after the change of model’s prediction and the corresponding Shapley value map s*.
1 Extract features using pre-trained model f: A0, hyy = f(1), f(U);

/% Saliency Partition x/

2 Compute model’s original prediction py, for class a and the contribution matrix p :
Pho) = Yalog fc(h(o))a pg[(,i))_ ; = Y log fc(h(o) © G[k, ; :]) VG[IC7 i € G;
3 Compute initial Shapley value map s(©) with Eq. 1: s =p;, - 1 —pp;

4 Obtain feature 7'? with highest Shapley value s* = maxs(®) ; // s* is the max value in current iteration

5 foreach h, in hy do

6 Ph = Ya IOg fc(hu)7 pﬁ[k‘ - = Ya IOg fc(hu ® é[k, : ]) Vé[k, | S G;

7 | Su=Top,,(pn-1-pg);
8 end

/* Fine-Grained Counterfactual Generation */
9 for t=1..max_iteration do

10 Search for [k, i, j]*) that satisfies overall objective function in Eq. 9;

11 | Obtain h(*) by replacing hgt*_l) with hs | )5

12 | ifargmax f.(hY) == cthen h

13 h* < h(t),s* — S(t); // s* is re-assigned to be the Shapley value map of h* at last
14 break;

15 else

16 Compute Pr) = Ya log fc(h(t))’ pﬁ[(é) - = Yq log fc(h(t) © é[k, : ]) vGv[lc, ;1 € é;
17 Compute Shapley value map s*) in iteration ¢ with Eq. 1: s®) = p,y -1 —pga;

18 Obtain feature hgt) with highest Shapley value s* = max s®;

19 end

20 end

as the total time consumed for 50 misclassified samples.
According to Fig. 10, when the threshold is set to 20, ex-
planations for all 50 misclassified samples are successfully
generated. Beyond 20, the number of generated explana-
tions does not change, but the total time consumed grad-
ually increases due to the increasing computational com-
plexity. Therefore, we select 20 as the optimal U threshold
setting.

8.2. Impact of Gaussian kernel (¢) on the Shapley
map

To determine the optimal value of o, we adjusted different
o values within the SP module to observe their impact on
the generated explanations in terms of the metrics Insertions
(Ins.), Deletions (Del.), and the Compact Activation Score
(). As shown in Fig. 11, when the sigma value is set to
0.8, the combined evaluation of the three metrics reaches
the optimal value. Therefore, we selected 0.8 as the optimal
o value in our method.
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Figure 11. The performance impact curve of different o values on
the explanations generated by our method.



8.3. Impact of hyperparameter ¢

We conducted additional validation on the hyperparameter
t, as shown in Figure 12.
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Figure 12. The impact of ¢ on counterfactual generation. When
t =100, the time consumed is minimal when the probability of
counterfactual generation nearly reaches its peak.



