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Supplementary Material

In this supplementary material, we present more implementation details of the proposed UPSR method and additional
visual results. Firstly, we introduce the details of the sampling process of UPSR in Sec. A. Secondly, we present the details
of weighting coefficient u(·) in Sec. B. Then, comparisons to several existing methods are made in Sec. C and Sec. D. Lastly,
additional visual examples are shown in Sec. E.

A. Details of the Sampling Process

Derivation of Eq. 7, 8: As discussed in Sec. 3.3, we apply region-specific weighting coefficient to the noise level based
on the sampling process of ResShift [44] and replace xt = xt→1 + ωt(y0 → x0) + ε

↑
ωtωt with xt = xt→1 + ωt(y0 →

x0)+εwu(y0)
↑
ωtωt, where ωt ↓ N (0, I) is from independently distributed Gaussian distribution and ω is a scaling factor.

Therefore, we rewrite the forward transition distribution as:

q(xt | xt→1,x0,y0) = N
(
xt | xt→1 + ωt(y0 → x0),ε

2wu(y0)
2ωtI

)
. (10)

Areas with higher uncertainty, e.g. edge and texture areas, are assigned larger weighting coefficients wu(y0) and therefore
greater noise εwu(y0)

↑
ωtωt. Meanwhile, xt can be reparameterized as:

xt = x0 +
t∑

i=1

(xi → xi→1) = x0 +
t∑

i=1

(ωt(y0 → x0) + εwu(y0)
↑
ωtωt)

= x0 + ϑt(y0 → x0) + εwu(y0)
↑
ϑtωt,

(11)

leading to the marginal distribution at time t as:

q(xt | x0,y0) = N
(
xt | x0 + ϑt(y0 → x0),ε

2wu(y0)
2ϑtI

)
. (12)

According to Bayes’s theorem, the reverse transition distribution can be written as

q(xt→1 | xt,x0,y0) =
q(xt | xt→1,x0,y0)q(xt→1 | x0,y0)

q(xt | x0,y0)

↔ q(xt | xt→1,x0,y0)q(xt→1 | x0,y0).

(13)

Incorporating Eq. 10, Eq. 12, and Eq. 13, we consider the distribution at each pixel i as:
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(14)

where µi
1 = xi

t→1 + ωt(yi0 → xi
0), µi

2 = xi
0 + ϑt→1(yi0 → xi

0), and µi
3 = (xi

t → µi
1) + xi

t→1 = xi
t → ωt(yi0 → xi

0). Next, we
further simplify Eq. 14 to:
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Therefore, we present the reverse transition distribution in Eq. 8 based on Eq. 15:

q(xt→1 | xt,x0,y0) =
∏

i

q(xi
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t, x
i
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i
0)

= N
(
xt→1 | ϑt→1

ϑt
xt +
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x0,ε

2wu(y0)
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)
.

(16)

Algorithm 1 Training procedure of UPSR.

Require: Diffusion model fϑ(·), pre-trained SR network g(·)
Require: Paired training dataset (X,Y )

1: while not converged do

2: sample x0,y0 ↓ (X,Y )
3: sample t ↓ U(1, T )
4: compute g(y0)
5: εest(y0) =

1
2 |g(y0)→ y0|

6: wu(y0) = u(εest(y0))
7: sample ϖ ↓ N (0,ε2ϑtwu(y0)2I)
8: xt = x0 + ϑt(y0 → x0) + ϖ
9: L(ϱ) =

∑
t

[
||fϑ(xt,y0, g(y0), t)→ x0||22 + ςLper(fϑ(xt,y0, g(y0), t),x0)

]

10: Take a gradient descent step on ↗ϑL(ϱ)
11: end while

12: return Converged diffusion model fϑ(·).

Details of the training procedure. We present the detailed training pipeline of the proposed UPSR method in Alg. 1.

B. Implementation of the Weighting Coefficient for Uncertainty-guided Perturbation

As a supplement to Sec. 3.3, we model the relationship between the weighting coefficient of region-specific perturbation and
the uncertainty estimate as a monotonically increasing function u↑(·) followed by a diagonalization process, i.e., wu(y0) =
u(εest(y0)) = diag(u↑(εest(y0))). In this section, we will detailedly introduce the implementation of this weighting
coefficient function u↑(·) in scalar form.

As illustrated in Fig. 7, the function consists of two major parts. For regions where the uncertainty estimate φest(yi0) ↘
[0,φmax], we define u↑(·) as a linear function with an offset bu and a slope of (1 → bu)/φmax, ensuring the output remains
within the range [bu, 1]. This part comprises both low-uncertainty and high-uncertainty regions, and we find this linear
modeling of the relationship between perturbation and uncertainty value offers a simple yet effective solution. Meanwhile,
the positive offset bu ensure a minimum noise level, preventing edge and texture areas from being assigned extremely low
noise levels due to occasionally inaccurate uncertainty estimates. We empirically find that setting φmax = 0.05 and bu = 0.4
leads to better perceptual quality, and several experimental results are shown in Tab. 5. In contrast, for regions where the
uncertainty estimate φest(yi0) ↘ (φmax,+≃), we set their weighting coefficients to a constant, i.e., wu(y0) = 1.0. A large
amount of isotropic noise is then applied in these areas to provide sufficient perturbation for the score estimation to ensure
the perceptual quality. In general, the weighting coefficient function u↑(·) can be formulated as:

u↑(φ) =

{
(1→bu)
ϖmax

φ + bu if 0 ⇐ φ ⇐ φmax

1 otherwise
. (17)

C. Comparisons to pretraining-based SR methods.

Pretraining-based SR methods [35, 39, 40] harness the generative power from pretrained text-to-image models, such as stable
diffusion, to enhance perceptual quality. However, they follow an entirely different track from ours. Firstly, their high
perceptual quality comes from SD’s capability to generate details inconsistent to LR inputs, therefore resulting in worse



Figure 7. A combined visualization of the distribution of the residual |y→ x| (left), and the weighting coefficient u(ωest(y)) with respect
to the estimated residual |y → g(y)|. In the region where the estimated residual is within [0, 0.1] (involving more than 80% of the data),
the value of weight coefficient function increases linearly with the input.

Table 5. Ablation study on effects of offset bu in the weighting coefficient function. The best results are highlighted in bold.

Model bu
RealSR RealSet

CLIPIQA↑ MUSIQ↑ NIQE↓ CLIPIQA↑ MUSIQ↑ NIQE↓

w/o offset 0.0 0.4464 55.671 4.74 0.5445 57.335 4.84
w/ offset 0.4 0.6010 64.541 4.02 0.6389 63.498 4.24

w/o uncertainty 1.0 0.5191 61.728 4.40 0.5781 61.371 4.58

fidelity. Secondly, the model size and GPU memory consumption of these methods surpass those of the proposed UPSR
method by up to 10 times. Thirdly, these methods are constrained by their fixed backbone, i.e., the stable diffusion model,
making them less adaptable for rescaling. This limitation reduces their practicality when deployed on lightweight devices.
Besides, these methods have to crop large input image to 128⇒128 patches, while UPSR can be directly applied to 512⇒512
or larger images.

D. Comparisons to one-step methods.

In the main paper, we apply five inference steps because we believe several more steps can better unleash the potential of
diffusion models. The performance of distillation-based methods (e.g., SinSR [38]) is closely tied to that of their multi-step
teacher models (e.g., ResShift [44]). We therefore develop UPSR which could work as a better teacher model to support the
training of better one-step models. Meanwhile, the target of reducing diffusion steps is speeding up inference, which can also
be achieved by rescaling the model size of denoiser. To make comparison with SinSR, we present UPSR-light with smaller
model size. As shown in Tab. 7, the rescaled model achieves better performance with comparable inference speed and less
than 1/3 of total model size.

Table 6. Qualitative comparison with SD-based models on RealSR
dataset. Quality metrics are re-evaluated on uncropped image.

Models Params Runtime Memory PSNR↓ LPIPS↔ MUSIQ↓ NIQE↔

StableSR-200 1410M 33.0s 8.51G 25.80 0.2665 48.346 5.87
AddSR-1 2280M 0.659s 8.47G 25.23 0.2986 63.011 5.17
OSEDiff-1 1775M 0.310s 5.85G 24.57 0.3035 67.310 4.34
UPSR-5 122M 0.212s 2.83G 26.44 0.2871 64.541 4.02

Table 7. Qualitative comparison with one-step model on RealSR
dataset. Quality metrics are re-evaluated on uncropped image.

Models Params Time Memory PSNR↓ LPIPS↔ MUSIQ↓ NIQE↔

SinSR-1 174M 0.141s 4.03G 26.01 0.4015 59.344 6.26
UPSR-light-4 52.7M 0.148s 2.48G 26.28 0.3025 63.785 4.13

E. Additional Visual Examples

In Fig. 8 and Fig. 9, we present more visual comparisons between the proposed UPSR and existing diffusion-based SR
methods [26, 43, 44].



RealSet_dog LDM-15 ResShift-15 ResShift-4 Ours

RealSet_panda LDM-15 ResShift-15 ResShift-4 Ours

Figure 8. Additional visual comparisons on RealSet [44].



RealSR_Canon_008 LDM-15 ResShift-15 ResShift-4 Ours

RealSR_Canon_025 LDM-15 ResShift-15 ResShift-4 Ours

RealSR_Canon_030 LDM-15 ResShift-15 ResShift-4 Ours

RealSR_Nikon_018 LDM-15 ResShift-15 ResShift-4 Ours

Figure 9. Additional visual comparisons on RealSR [1].
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