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1. Additional Implementation Details

In this section, we elaborate on the implementation details
of our proposed approach.

1.1. Evaluation Metrics

3D Objection Detection. In accordance with the evalu-
ation protocols established in previous works [1, 4, 7], we
utilize the NuScenes Detection Score (NDS) and mean Av-
erage Precision (mAP) as the primary metrics for assessing
3D object detection performance. The mAP is computed
using the center distance on the ground plane rather than
the 3D Intersection over Union (IoU), to match the pre-
dicted results and ground truth. Furthermore, the nuScenes
dataset incorporates five types of true positive metrics (TP
metrics), including ATE, ASE, AOE, AVE, and AAE for
measuring translation, scale, orientation, velocity, and at-
tribute errors, respectively. These TP metrics are defined
for each class, and their means are computed across classes
to yield mATE, mASE, mAOE, mAVE, and mAAE. Based
on these TP errors, we define the TP score as TPg.ore =
max(1 —TPerror, 0). Subsequently, the nuScenes detection
score (NDS) is computed as:

NDS = % [5mAP + 3" TPocore (1)

to encapsulate all aspects of the nuScenes detection com-
prehensively.

Semantic Occupancy Prediction. In the context of 3D
semantic occupancy prediction, we adhere to the evaluation
methodology employed by existing methods [2, 5, 6], utiliz-
ing mean intersection-over-union (mloU) across all classes
and intersection-over-union (IoU) as the evaluation metrics:

TP,

1
IoU= -
R = e ; TP, + FP;, + FN;’

2)

where C' = 17, ¢g, TP, FP, F'N denote the number of
semantic classes in the Occ3D-nuScenes dataset [6], the
empty class, the number of true positive, false positive and
false negative predictions, respectively.

Algorithm 1 The pseudocode of voxel velocity estimation.

Input: Vi, M

Output: V, .,
# predict the absolute flow for each voxel
Fi < flow_decoder(V;)
# transform the flow into absolute grid displacement to
the future
ft—&-n (—Alf'n'ff
# transform the absolute displacement to the future ego
coordinate by using the current to future transformation
Fign & M- Fiin
# warping the current frame volume feature to the future
Vitn < grid_sample(V;, Fiip)
return Vt—i—n

1.2. Details of Voxel Velocity Estimation Module

In the main paper, we have presented the effectiveness of the
proposed self-supervised voxel velocity estimation module
in capturing inherent temporal consistencies. Here we elab-
orate on more details of this module. The pseudocode for
the voxel velocity estimation module is presented in Alg. 1.
In this context, the inputs V;, M represent the extracted vol-
ume features at the current frame and the pose transforma-
tion matrix from the current frame to a future frame, respec-
tively. The output is the predicted volume features Vy,, in
the future frame at time n+-¢. The process begins by predict-
ing the absolute flow JF; for each voxel relative to the cur-
rent frame coordinates, utilizing an MLPs-based flow de-
coder. Subsequently, the voxel flow is transformed into the
voxel grid displacement for future frames using the formula
At - n - Fy, where At and n are the time interval between
adjacent frames, and n denotes the number of frames to be
forecasted. In the nuScenes dataset, At is set to % by de-
fault, corresponding to the synchronized camera frame rate
of 12 frames per second. The next step involves transform-
ing the voxel displacement from the current frame to the
future frame, relative to the future ego coordinate, by em-
ploying the pose transformation matrix. Finally, the future
volume feature is obtained by warping the current volume
feature with the predicted voxel displacement.



Primitives ‘ Variants Value ‘ NDS mAP
\ Absolute \ - \ 26.8 259

Mean
0.25 273 265
Offset 050 | 272 265
| Fixed | 04 |269 253

Scale
[0.1, 0.5] 273  26.5
Leamnable |~ > 0 g) | 268  26.1
Rotation Fixed [1,0,0,0] | 27.2 26.7
Learnable - 273 265

Table 1. Ablation studies on various learning objectives for pre-
dicting Gaussian primitives.

2. Additional Experimental Results

Due to the space constraint of the main paper, we provide
more experimental results here to facilitate a more compre-
hensive understanding of our proposed method.

Effects of Gaussian Primitives. In VisionPAD, we present
autonomous driving scenes as a set of Gaussian primitives
{gr = (tk, X, g, i) HS_ |, where each Gaussian g, is pa-
rameterized by its 3D position or mean g, € R?, a covari-
ance Xy, an opacity oy, € [0, 1], and spherical harmonics
(SH) coefficients ¢, € R¥. The covariance 3}, is further
formulated using a scaling matrix and rotation matrix to en-
sure its positive semi-definite. Therefore, it’s worth explor-
ing various potential learning objectives for predicting these
Gaussian primitives. To mitigate computational demands
during training, this ablation study is confined to the 3D ob-
ject detection task, employing 50% of the training data dur-
ing the pre-training phase and 25% during the fine-tuning
stage. Results are reported on the entire nuScenes valida-
tion set. The model used in this ablation study is consistent
with the one employed in the main paper.

The results are presented in Tab. 1. We designed var-
ious experimental variants to explore the effects of differ-
ent learning objectives. For each variant, we maintained
the predictions of other primitives as consistent with those
used in the main paper. We initially exploit the manners
for the prediction of Gaussian mean parameters. By de-
fault, we transformed the Gaussian mean prediction prob-
lem into an offset prediction task using voxel centers as an-
chors. We also introduced an offset scaling factor to con-
strain the range of offset values. Consequently, a Gaussian
mean can be obtained by:

i = Xy + (sigmoid(Oy) — 0.5) - s, 3)

where x,, is the coordinate of an anchor point, O}, € R1*3
is the learnable offset, and s is the scaling factor. We em-
pirically set the s to 0.25, as the same in our main paper,
achieving a performance of 27.3 NDS and 26.5 mAP. When

Methods ‘ Decoder Memory Latency
UniPAD-C NeRF 1973MB  900ms
VisionPAD | 3D-GS 134MB 70ms

Table 2. The speed analysis of our method with the UniPAD.

the scaling factor was increased to 0.5, no obvious perfor-
mance changes were observed. Furthermore, instead of pre-
dicting position offset relative to the centers of volume an-
chors, we directly regressed the absolute yj, via MLPs (sec-
ond row in Tab. 1). This resulted in a performance decline
in both NDS and mAP, from 27.3 NDS and 26.5 mAP to
26.8 NDS and 25.9 mAP. This indicates that it’s beneficial
to predict Gaussian means by predicting the offsets relative
to the anchor centers.

In relation to the Gaussian scale and rotation, our pri-
mary focus is on exploring the effects of their learnabil-
ity. By default, the scale and rotation parameters are set
to be learnable, with the scale constrained to the range of
[0.1,0.5]. The final scale of Gaussian k is calculated as:

Sk = 81+ (84 — 81) - sigmoid(Sg), 4

where s; and s, represent the lower and upper bounds of
the scale, respectively, and Sy, is the learnable scale param-
eter. We also experimented with a larger range of [0.2,0.8],
which resulted in a slight decrease in performance. When
the scale and rotation is fixed by setting them as a constant
of 0.4 (i.e. half of the voxel size) and [1,0,0,0], i.e. the
Gaussian degenerates into a spherical form. Fixing these
parameters leads to varying degrees of performance decline,
particularly notable when the scale is constant, resulting in
a decrease in mAP from 26.5 to 25.3. This indicates that a
fixed scale is inadequate for effectively modeling the scene.
Speed Analysis. The NeRF-based methods often suffer
from substantial GPU memory consumption and slow ren-
dering speeds. Furthermore, the resource consumption in
NeRF-based methods notably increases with larger render-
ing sizes. In contrast, our 3D-GS-based approach maintains
faster rendering speeds irrespective of rendering size. As
presented in Tab. 2, we compare the efficiency and memory
consumption between UniPAD-C with ours when rendering
the same 360 x 640 images. We conduct this experiment in
a single NVIDIA A100 GPU. Our approach distinctly re-
sults in an approximate 93.2% reduction in memory usage,
alongside an approximate 92.2% decrease in rendering la-
tency. This validates the potential of the 3D-GS-based pre-
training paradigm.

UniPAD with V.V. Est. and P.C. To further validate the ef-
fectiveness of the proposed photometric consistency (P.C.)
and the self-supervised voxel velocity estimation (V.V.
Est.), we apply these two strategies in the UniPAD. The re-
sults are shown in Tab. 3, our proposed modules achieve



significant improvements on UniPAD (+3.3%/+5.0%). It
is worth noting that 3D-GS renders the entire image with
lower computational cost. Compared to ray-sampling ap-
proach in UniPAD, 3D-GS increases the effective pixels
for photometric consistency supervision, thereby achieving
better results.

Model UniPAD | w/ V.V. Est. and P.C. | VisionPAD

NDS/mAP | 22.3/18.3 25.6/23.3 27.3/26.5

Table 3. The effectiveness and generalizability of proposed pro-
posed photometric consistency (P.C.) and the self-supervised voxel
velocity estimation (V. V. Est.) strategies for pre-training.

Computation Cost of Gaussian Filtering. As illustrated
in Tab. 4, we demonstrate that using the Gaussian filter can
effectively reduce memory usage and improve speed.

Model ‘ Memory Latency NDS
w/o filter 186MB 90ms 26.8
VisionPAD 134MB 70ms 27.3

Table 4. The computation cost analysis of Gaussian filtering oper-
ation.

3. Additional Visualization Results

As illustrated in Fig. 1, we visualize an additional scene to
qualitatively assess the efficacy of our method. To facili-
tate an intuitive comparison of the perception results, we
simultaneously demonstrate the 3D object detection and 3D
semantic occupancy prediction within the same scene. The
3D object detection results are predicted by the UVTR [3],
while the 3D semantic occupancy prediction results are ob-
tained by the BEVDet [1]. Both of them are pre-trained by
our method.

From the results, we can not only discern the desirable
performance of both 3D object detection and occupancy
prediction but also highlight the respective strengths and
limitations inherent in these two representations. The dense
occupancy representation, is capable of depicting arbitrary
irregular objects and background obstacles in a detailed
voxel format, but tends to demand higher computational re-
sources. Conversely, 3D bounding boxes primarily repre-
sent foreground objects in a sparse format. In this scene,
despite the accurate detections of most objects, some false
positive bounding boxes are observed, and the orientation
is also not accurate enough to describe the excavator at the
front right. In comparison, the occupancy predictions offer
a more satisfactory representation of these critical objects.
Encouragingly, as the visualization results indicate, our pre-
training paradigm enhances performance across both tasks.
It further underscores the efficacy and adaptability of our
proposed method.
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Figure 1. Visualization of 3D object detection and 3D semantic occupancy prediction results. Each detected object instance is depicted by
a unique colored 3D bounding box. The legend at the bottom delineates the semantic classes of occupancy.
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