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A. Proofs of Theorems

A.1. Useful Lemmas

Lemma 1. Let z = f(x), z1 = f(x1) and s̄(z) = − 1
|N+

x |∑
xp∈N+

x
log

exp s(z,zp)∑
xn∈D exp s(z,zn)

. If ∆(z, z1)=|s̄(z)− s̄(z1)|
is valid when x1 ∈ Bϵ(x), ∆(·, ·) is a distance metric.

Proof of Lemma 1. It is obvious that for any x, ∆(z, z) =
0. And for any x and x1 ∈ Bϵ(x) the symmetry and non-
negativity are clearly satisfied by ∆(z, z1). We only need to
justify that ∆(·, ·) satisfies the triangle inequality. For any
x, x1 and x2, since we have

∆(z, z1) + ∆(z, z2)

=∆(z1, z2) + ∆(z, z2)−∆(z1, z2) + ∆(z, z1)

=|s̄(z1)− s̄(z2)|+ |s̄(z)− s̄(z2)| −∆(z1, z2) + ∆(z, z1)

≥|s̄(z1)− 2s̄(z2) + s̄(z)| −∆(z1, z2) + ∆(z, z1)

=|2s̄(z1)− 2s̄(z2) + s̄(z)− s̄(z1)| −∆(z1, z2) + ∆(z, z1)

≥|2s̄(z1)− 2s̄(z2)| − |s̄(z)− s̄(z1)| −∆(z1, z2) + ∆(z, z1)

=2∆(z1, z2)−∆(z, z1)−∆(z1, z2) + ∆(z, z1)

=∆(z1, z2),

i.e, the triangle inequality ∆(z, z1)+∆(z, z2) ≥ ∆(z1, z2)
always holds. Therefore, ∆(·, ·) is a distance metric.

Lemma 2. |lcon(z′, z)− lcon(z, z)| = ∆(z′, z)

Proof of Lemma 2. According to Eq. (7),

lcon(z
′, z)− lcon(z, z)

=− 1

|N+
x |

∑
xp∈N+

x

log
exp (s(z′, zp))∑

xn∈D∗ exp (s(z′, zn))

+
1

|N+
x |

∑
xp∈N+

x

log
exp (s(z, zp))∑

xn∈D∗ exp (s(z, zn))

=s̄(z′)− s̄(z).

Therefore, |lcon(z, z)− lcon(z
′, z)| = ∆(z′, z).

A.2. Detailed Proofs

Proof of Theorem 1. By the LogSumExp operation, i.e.,
log(ex1 + ex2 + ...+ exn) ≈max {x1, x2, ..., xn}, we can

transform the contrastive loss in Eq. (7) to

lcon(z
′, z)

=
1

|N+
x |

∑
xp∈N+

x

log

∑
xn∈D∗ es(z

′,zn)

es(z
′,zp)

=
1

|N+
x |

∑
xp∈N+

x

log
(
e0 +

∑
xn∈D,xn ̸=xp

es(z
′,zn)−s(z′,zp)

)
≈ 1

|N+
x |

∑
xp∈N+

x

max
{
0,
{
s(z′, zn)− s(z′, zp)

}
xn∈D,xn ̸=xp

}
,

from which we can see that maximizing lcon(z
′, z) is ap-

proximately maximizing the last line.

Proof of Theorem 2. 1) According to Hoeffding’s Inequal-
ity [11], with probability at least 1−δ the following inequal-
ity holds:

EPX,Y
[lnat(X,Y )]− 1

|D∗|
∑

(x,y)∈D∗

lnat(x, y)

≤EPX,Y
[lnat(X,Y )]− 1

|Dl|
∑

(x,y)∈Dl

lnat(x, y)

≤lm

√
log 1

δ

2|Dl|
,

where the second line holds because existing works [7, 34]
have theoretically proven that pseudo-labeled data gener-
ated by self-training can decrease the generalization gap.

Then according to the Definition 1,

ρlnat = inf
g
EPX,Y

[lnat(X,Y )]

≤ A1 + lm

√
log 1

δ

2|Dl|

with probability at least 1− δ.
2) Again according to Hoeffding’s Inequality, with prob-

ability at least 1− δ the following inequality holds:

EPX
[∆(f(X ′), f(X))]− 1

n

∑
x∈D

∆(x′, x) ≤ ∆m

√
log 1

δ

2|D|
,

where ∆m is the supremum of the distance ∆(·, ·) over
{(z′, z)|x ∼ PX ∧ x′ ∈ Bϵ(x) ∧ z = f(x) ∧ z′ = f(x′)}.



And thus we have the following inequalities:

EPX
[ sup
X′∈Bϵ(X)

∆(f(X ′), f(X))]−∆m

√
log 1

δ

2|D|

≤ 1

|D|
∑
x∈D

sup
x′∈Bϵ(x)

∆(z′, z)

≤ 1

|D|
∑
x∈D

sup
x′∈Bϵ(x)

{
lcon(z

′, z)− lcon(z, z)
}

≤ 1

β|D|
∑
x∈D

sup
x′∈Bϵ(x)

{
KL(C(x)∥C(x′))

+ β(lcon(z
′, z)− lcon(z, z))

}
=

1

β|D|
∑
x∈D

sup
x′∈Bϵ(x)

ladv(x
′, x)

=
2

β
A2,

where the first inequality holds with probability at least 1−
δ. Then according to Definition 1, we can get that

γ∆ = EPX
[ sup
X′∈Bϵ(X)

∆(f(X ′), f(X))]

≤ 2

β
A2 +∆m

√
log 1

δ

2|D|
.

Therefore, feature f captured by the target model C =
g ◦ f trained by WSCAT is ρlnat -γ∆-robust, where ρlnat ≤
lm

√
log 1

δ

2|Dl| with probability at least 1− δ, and γ∆ ≤ 2
βA2 +

∆m

√
log 1

δ

2|D| with probability at least 1− δ.

B. Additional Experimental Results
B.1. Performance Comparison (RQ1)

The performance of WSCAT-sup and TRADES under fully-
supervised setting across various model architectures is
shown in Tab. 1.

B.2. Ablation Study (RQ3)

The performance of WSCAT and WSCAT’s different vari-
ants is shown in Tabs. 2 to 4.

B.3. Training Time (RQ5)

To show WSCAT does not excessively increases the training
time than existing semi-supervised AT methods, we com-
pare WSCAT’s epoch time with that of RST, which is an
efficient semi-supervised AT method [43]. The result is
shown in Tab. 5, from which one can observe that WSCAT
does not bring additional training time cost overall. The
result is reasonable since during a batch of the training, the
loss defined in Eq. (7) can be calculated just based on points
in that batch instead of the entire dataset.

Table 1. Performance of models trained by Standard, TRADES
and WSCAT-sup (a variant of our WSCAT that uses only labeled
data) under fully-supervised setting.

Dataset
(Model) Method Nat. FGSM PGD CW AA Mean NRF

CIFAR10
(ResNet50)

Standard 95.15 42.37 0.02 0.01 0.00 0.00 0.00
TRADES 80.34 56.05 51.74 49.27 47.99 55.10 43.92

WSCAT-sup 82.37 59.84 57.84 52.50 51.41 59.07 45.86

CIFAR10
(ResNet152)

Standard 95.26 49.42 0.01 0.00 0.00 0.00 0.00
TRADES 81.52 56.56 51.55 49.96 48.15 55.48 57.01

WSCAT-sup 80.98 59.92 58.46 52.89 52.09 59.35 58.56

CIFAR10
(WRN28-10)

Standard 96.23 43.34 0.01 0.02 0.00 0.00 0.00
TRADES 84.65 60.92 56.34 54.12 52.85 59.97 50.44

WSCAT-sup 84.18 61.42 59.72 54.02 52.91 60.74 55.12

CIFAR100
(WRN28-10)

Standard 78.62 16.27 0.34 0.09 0.00 0.00 -
TRADES 58.69 33.74 30.77 28.31 27.02 33.00 -

WSCAT-sup 59.71 34.61 32.63 28.80 27.46 33.92 -

Table 2. Performance of different variants on CIFAR10.

Methods WSCAT WSCAT-fixed WSCAT-self WSCAT-std

Natural 80.93±0.14 79.04±0.45 80.72±0.12 76.65±0.30

FGSM 59.62±0.16 57.56±0.22 58.71±0.25 55.33±0.37

PGD 58.52±0.22 54.55±0.17 54.58±0.43 53.75±0.18

CW 53.15±0.08 51.66±0.03 52.20±0.34 48.68±0.10

AA 52.23±0.06 50.77±0.06 51.20±0.34 48.00±0.02

Mean 59.40±0.05 57.20±0.06 57.80±0.27 54.88±0.03

Table 3. Performance of different variants on CIFAR100.

Methods WSCAT WSCAT-fixed WSCAT-self WSCAT-std

Natural 55.14±0.52 55.09±0.08 54.70±1.48 51.66±0.18

FGSM 28.41±0.09 27.43±0.35 27.55±0.49 25.22±0.46

PGD 25.26±0.32 23.84±0.36 24.08±0.11 21.89±0.29

CW 22.99±0.41 22.65±0.03 22.04±0.58 19.39±0.40

AA 21.82±0.40 21.83±0.01 20.77±0.72 18.70±0.15

Mean 27.43±0.29 26.97±0.02 26.36±0.44 23.83±0.05

Table 4. Performance of different variants on ImageNet32-100.

Methods WSCAT WSCAT-fixed WSCAT-self WSCAT-std

Natural 34.64±2.76 33.28±0.00 32.32±0.00 31.43±0.11

FGSM 12.63±0.13 12.54±0.00 12.62±0.00 8.61±0.19

PGD 9.89±0.35 9.94±0.00 9.80±0.00 6.90±0.20

CW 8.01±0.37 8.02±0.00 8.06±0.00 5.11±0.23

AA 7.27±0.33 7.14±0.00 7.06±0.00 4.61±0.23

Mean 10.59±0.32 10.52±0.00 10.46±0.00 7.09±0.27

Table 5. Epoch time of WSCAT and RST.

Datasets CIFAR10 CIFAR100 ImageNet32-100

WSCAT 5′15′′ 5′18′′ 13′02′′

RST 5′14′′ 5′18′′ 13′20′′


	. Proofs of Theorems
	. Useful Lemmas
	. Detailed Proofs

	. Additional Experimental Results
	. Performance Comparison (RQ1)
	. Ablation Study (RQ3)
	. Training Time (RQ5)


