
Zero-Shot 4D Lidar Panoptic Segmentation

Supplementary Material

Abstract

In this appendix, we provide:
• A more detailed description of our core methodology,

SAL-4D pseudo-label engine and model in (Appendix A);
• In Appendix B, we provide more detailed discussion of

our baselines;
• Additional evaluation, including pseudo-label and model

ablations and per-class results (Appendix C), and, finally,
• Additional qualitative results (Appendix D).

A. Implementation Details
A.1. Pseudo-label engine
This section expands the description (Sec. 3.2) of our
pseudo-label engine with a higher level of detail, in-
cluding pseudo-code detailing core components of our
pseudo-engine (Track–Lift–Flatten, Algorithm 1, Cross-
Window Association, Algorithm 2). To ensure this section
is self-contained, we start with a high-level overview.

Inputs&Notation. Our pseudo-label engine operates with
a multi-modal sensory setup. We assume an input Lidar
sequence P = {Pt}Tt=1 along with C unlabeled videos
V = {Vc}Cc=1, where each video Vc = {Ict }Tt=1 consists of
images Ict ∈ RH×W×3 of spatial dimensions H ×W , cap-
tured by camera c at time t. For each point cloud Pt, we pro-
duce pseudo-labels, comprising of tuples {m̃i,t, idi, fi}Mt

i=1,
where m̃i,t ∈ {0, 1}Nt represents the binary segmentation
mask for instance i at time t in the point cloud Pt, and
idi ∈ N is the unique object identifier for spatio-temporal
instance i. Finally, fi ∈ Rd represents instance semantic
features aggregated over time.

Hyperparameters. We list relevant hyperparameters in
Tab. 1.

A.1.1. Track–Lift–Flatten

Overview. In a nutshell, for each temporal window, we
track objects in video (track), lift masks to 4D Lidar se-
quences (lift), and, finally, “flatten” overlapping masklets in
the 4D volume.

Sliding windows. We proceed by sliding a temporal win-
dow of size K with a stride S over the sequence of length
T . We first pseudo-label each temporal window, and then
perform cross-window association to obtain pseudo-labels
for sequences of arbitrary length. Our temporal windows
wk = {(Pt, It) | t ∈ Tk} consist of Lidar point clouds
and images over specific time frames. Here, Tk = {tk, tk +

1, . . . , tk+K−1} is the set of time indices for window wk.
For simplicity, we drop the camera index c unless explicitly
needed. We explain our approach assuming a single-camera
setup (C = 1) and discuss the generalization to a multi-
camera setup as necessary.

Track. For each video, we use a segmentation foundation
model (SAM [11]) to perform grid-prompting in the first
video frame of the window Itk to localize objects as masks
{mi,tk}

Mtk
i=1 , mi,tk ∈ {0, 1}H×W , where Mtk denotes the

number of discovered instances in Itk . We then propagate
masks through the entire window {It | t ∈ Tk} using
SAMv2 [15] to obtain masklets {mi,t | t ∈ Tk}

Mtk
i=1 for all

instances discovered in Itk . This results in Mtk overlapping
masklets in a 3D video volume of dimensions H×W ×K,
representing objects visible in Itk across the window wk.

Given masklets {mi,t | t ∈ Tk}
Mtk
i=1 and correspond-

ing images {It | t ∈ Tk}, we compute semantic features
fi,t for each mask mi,t using relative mask attention in the
CLIP [14] feature space and obtain masklets paired with
their CLIP features {(mi,t, idi,k, fi,t) | t ∈ Tk} for each
instance i, where idi,k is a local instance identifier within
window wk. Detailed parameters of SAM and SAMv2 can
be found in Tab. 1.

Lift. We associate 3D points {Pt | t ∈ Tk} with image
masks mi,t via Lidar-to-camera transformation and projec-
tion. We refine our lifted Lidar masklets to address sen-
sor misalignment errors using density-based clustering [8].
We create an ensemble of DBSCAN clusters by varying the
density parameter and replacing all lifted masks with DB-
SCAN masks with sufficient intersection-over-union (IoU)
overlap (0.5) [13]. Due to the presence of moving objects,
which makes the DBSCAN cluster prone to error, we per-
form this procedure separately for individual scans. De-
tailed ablations can be found in Appendix C.

We obtain sets {(m̃c
i,t, idc

i,k, f
c
i,t) | t ∈ Tk} indepen-

dently for each camera c, and fuse instances with sufficient
IoU overlap (0.5) across cameras. We fuse their semantic
features fi,t via mask-area-based weighted average to ob-
tain a set of tuples {(m̃i,t, idi,k, fi,t) | t ∈ Tk}, that repre-
sent spatio-temporal instances localized in window wk.

Flatten. The resulting set {(m̃i,t, idi,k, fi,t) | t ∈ Tk} con-
tains overlapping masklets in 4D space-time volume, lead-
ing to ambiguities in point assignments. To ensure each
point is assigned to at most one instance, we perform spatio-
temporal flattening as follows. We compute the spatio-
temporal volume Vi of each masklet M̃i = {m̃i,t | t ∈ Tk}
by summing the number of points across all frames: Vi =

∑
t∈Tk
|m̃i,t|, where |m̃i,t| denotes the number of points in

mask m̃i,t. We sort the masklets in descending order based
on their volumes Vi, and incrementally suppress masklets
with intersection-over-minimum larger than empirically de-
termined threshold. For each masklet M̃i in the sorted list,
we compute the Intersection-over-Minimum (IoM) with all
remaining masklets M̃j :

IoMij =

∑
t∈Tk
|m̃i,t ∩ m̃j,t|

min(Vi, Vj)
. (1)

If IoMij > θ (a predefined threshold we set it as 0.5), we
suppress M̃j by removing it from the list. The value of
θ controls the aggressiveness of suppression (set to a high
value to prevent overlapping masklets). With this flatten-
ing operation, we favor larger and temporally consistent
instances (i.e., prefer larger volumes), and ensure unique
point-to-instance assignments (via IoM-based suppression)
in the 4D space-time volume. However, we obtain pseudo-
labels only for objects visible in the first video frame Itk of
each window wk. Objects appearing after tk are not cap-
tured in this label set.

A.1.2. Labeling Arbitrary-Length Sequences
After labeling each temporal window, we obtain pseudo-
labels for point clouds within overlapping windows of size
K, {(m̃i,t, idi,k, fi,t) | t ∈ Tk}, with local instance iden-
tifiers idi,k. As mentioned before, the pseudo-label only
covers objects found in the first frame of each window. To
produce pseudo-labels for the full sequence of length T and
account for new objects entering the scene, as detailed in
Algorithm 2, we associate instances across windows in a
near-online fashion (with stride S), resulting in our final
pseudo-labels {(m̃i,t, idi, fi) | t ∈ T}, where idi is con-
sistent across the sequence and fi is averaged CLIP feature
of the same instance across the sequence.

For each pair of overlapping windows (wk−1, wk), we
perform association by solving a linear assignment prob-
lem:

A∗ = argmin
A

Mk−1∑
i=1

Mk∑
j=1

cijAij (2)

Subject to:

Mk∑
j=1

Aij ≤ 1, ∀i = 1, . . . ,Mk−1

Mk−1∑
i=1

Aij ≤ 1, ∀j = 1, . . . ,Mk

Aij ∈ {0, 1}.

Here, Aij indicates whether instance idi,k−1 in wk−1 is as-
signed to instance idj,k in wk. We derive association costs

Parameter Value

SAM [11]

Model sam vit h 4b8939
Inference POINTS PER SIDE 32
Inference POINTS PER BATCH 64
Inference PRED IOU THRESH 0.84
Inference STABILITY SCORE THRESH 0.86
Inference STABILITY SCORE OFFSET 1.0
CROP N LAYERS 1
Inference BOX NMS THRESH 0.7
Inference CROP NMS THRESH 0.7
Inference MIN MASK REGION AREA 100

SAM2 [15]

Model sam2 hiera large.pt
Config sam2 hiera l.yaml

Pseudo-label engine

NMS IoU threshold 0.5
Multi-view IoU threshold 0.5
DBSCAN IoU overlap threshold 0.5
DBSCAN density thresholds (1.2488, 0.8136, 0.6952,

0.594, 0.4353, 0.3221)

Zero-shot model

GPUs 8 × 80GB (A100)
Batch size 24 (3 per GPU)
Learning rate (LR) 0.0002
Number of iterations 40000
LR scheduler OneCycleLR (pct start=0.1)
Number of queries 300
Overlap threshold 0.0
Loss weights 2.0, 5.0, 5.0, 10.0, 2.0

Table 1. SAL-4D hyperparameters. We list hyperparameters,
including (i) segmentation foundation model parameters (SAM
model [11], which we use to generate segmentation masks in im-
ages, and SAMv2 [15] that we use for the temporal mask propaga-
tion), (ii) the pseudo-label engine and (iii) 4D zero-shot segmen-
tation model parameters.

from temporal instance overlaps (measured by 3D-IoU) in
the overlapping frames Tk−1 ∩ Tk, defined as:

cij = 1− IoU3D(m̃i,k−1, m̃j,k), (3)

where m̃i,k−1 and m̃j,k are the aggregated Lidar masks
of instances i and j over the overlapping frames. This
linear assignment problem can be efficiently solved using
the Hungarian algorithm. After association, we update the
global instance identifiers idi for matched instances and ag-
gregate their semantic features fi over time. As a final post-
processing step, we remove instances that are shorter than a
specified temporal threshold τ (i.e., instances appearing in
fewer than τ frames, τ is set to 1 in our experiments).

A.2. Model
This section extends Sec. 3.3, and provides a more detailed
description of our model. Our model operates on point
clouds Psuper ∈ RN×4, N = Ntk + . . . + Ntk+K−1, su-
perimposed over fixed-size temporal windows wk. Within
these, our model directly estimates a set of spatio-temporal
instances as (binary) segmentation masks, M ∈ RM×N .
Instead of estimating a posterior over a (fixed) set of seman-

Algorithm 1 Track-Lift-Flatten (Per-Window Processing)

Input: Window index k, time indices Tk, Lidar point
clouds {Pt | t ∈ Tk}, images {Ict | t ∈ Tk, c =
1, . . . , C}

Output: Pseudo-labels for window wk:
{(m̃i,t, idi,k, fi,t) | t ∈ Tk}

1: // Track
2: for each camera c do
3: Ictk ← image at time tk from camera c
4: {mc

i,tk
} ← SAM(Ictk) ▷ Generate initial masks

5: {mc
i,t}t∈Tk

← SAMv2({Ict }t∈Tk
, {mc

i,tk
}) ▷

Propagate masks
6: {f c

i,t}t∈Tk
←MaskCLIP({Ict }t∈Tk

, {mc
i,t}t∈Tk

) ▷
Compute semantic features

7: end for
8: // Lift
9: for each time t ∈ Tk do

10: Pt ← Lidar point cloud at time t
11: for each instance i do
12: for each camera c do
13: m̃c

i,t ← project mask(Pt, mc
i,t) ▷ Project

image masks onto Lidar
14: end for
15: m̃i,t ← merge masks({m̃c

i,t}Cc=1) ▷ Merge
masks from all cameras

16: m̃i,t ← refine with DBSCAN(m̃i,t, Pt) ▷
Refine using DBSCAN

17: end for
18: end for
19: // Flatten
20: Compute volumes Vi ←

∑
t∈Tk
|m̃i,t| for each in-

stance i
21: Sort instances {i} in descending order of Vi

22: for each instance i in sorted order do
23: for each instance j ̸= i not yet suppressed do
24: Compute IoMij ←

∑
t∈Tk

|m̃i,t∩m̃j,t|
min(Vi,Vj)

25: if IoMij > θ then
26: Suppress instance j
27: end if
28: end for
29: end for
30: Assign local instance IDs idi,k within window wk

31: return {(m̃i,t, idi,k, fi,t) | t ∈ Tk}

tic classes (as in prior work [1, 12, 18]), we regress object-
ness scores O ∈ RM×2 that indicate how likely an instance
represents an actual object. Following [13], we additionally
regress for each instance a semantic (CLIP [14]) feature to-
ken F ∈ RM×d that can be used for zero-shot recognition
at the test-time.

Hyperparameters. We list relevant hyperparameters
in Tab. 1.

Algorithm 2 Pseudo-label Engine with Cross-Window As-
sociation
Input: Lidar sequence P = {Pt}Tt=1, unlabeled videos
V = {Vc}Cc=1, window size K, stride S

Output: Pseudo-labels {(m̃i,t, idi, fi)} for t = 1 to T
1: Initialize global instance ID counter: id← 0
2: Initialize empty global instance set: I ← ∅
3: for k = 0 to

⌈
T
S

⌉
do ▷ Slide temporal window

4: tk ← kS
5: Tk ← {tk, tk + 1, . . . ,min(tk +K − 1, T)} ▷

Time indices for window wk

6: // Per-Window Processing
7: {(m̃i,t, idi,k, fi,t) | t ∈ Tk} ← Track-Lift-

Flatten(k, Tk, {Pt}t∈Tk
, {Ict }t∈Tk

)
8: // Cross-Window Association
9: if k > 0 then

10: Ok ← Tk ∩ Tk−1 ▷ Overlapping time frames
11: For instances in wk−1 and wk, compute costs:
12: for each instance i in wk−1 do
13: for each instance j in wk do
14: m̃i,O ← aggregate masks({m̃i,t}t∈Ok

)
15: m̃j,O ← aggregate masks({m̃j,t}t∈Ok

)
16: cij ← 1− IoU3D(m̃i,O, m̃j,O)
17: end for
18: end for
19: Solve linear assignment problem with costs cij
20: for each instance i is matched do
21: Update global instance IDs idi for matched

instances
22: end for
23: for each instance i is not matched do
24: Assign new global instance IDs idi for the

unmatched new instances
25: end for
26: end if
27: Add instances from window wk to global set I
28: for each instance i in I do
29: Aggregate semantic features fi over time
30: end for
31: end for
32: // Post-processing
33: for each instance i in I do
34: if number of frames where instance i appears < τ

then
35: Remove instance i from I ▷ Discard

short-lived instances
36: end if
37: end for
38: return {(m̃i,t, idi, fi)} for all i and t

Model. Our model operates on point clouds Psuper ∈
RN×4, N = Ntk + . . . + Ntk+K−1, superimposed over
fixed-size temporal windows wk. As in [13], we encode

superimposed sequences using Minkowski U-Net [6] back-
bone to learn a multi-resolution representation of our input
using sparse 3D convolutions. resulting in voxel features
Fv ∈ RCv×Nv and point feature Fp ∈ RCp×N . For spatio-
temporal reasoning, we augment voxel features with Fourier
positional embeddings [16, 18] that encode 3D spatial and
temporal coordinates.

Our segmentation decoder follows the design of [3, 4,
12]. Inputs to the decoder are a set of M learnable queries
that interact with voxel features, i.e., our (4D) spatio-
temporal representation of the input sequence. For each
query, we estimate a spatio-temporal mask , an objectness
score indicating how likely a query represents an object and
a d-dimensional CLIP token capturing object semantics.

A.2.1. Backbone
As in [13], we encode superimposed sequences using
Minkowski U-Net [6] backbone to learn a multi-resolution
representation of our input using sparse 3D convolutions.
resulting in voxel features Fv ∈ RCv×Nv and point feature
Fp ∈ RCp×N . For spatio-temporal reasoning, we augment
voxel features with Fourier positional embeddings [16, 18]
that encode 3D spatial and temporal coordinates.

A.2.2. Superimposing Point Clouds
At test-time, we transform point clouds to a common co-
ordinate frame using known ego-poses, concatenate points,
and voxelize them. Due to the voxelization of point clouds,
such concatenation has a minor memory overhead (by con-
trast to point-based backbones that require more careful su-
perposition strategies [1], which utilizes point-based back-
bones and performs sub-sampling). However, at the train
time, we leave 10% of batches un-aligned to expose the net-
work to a larger variety of non-aligned spatio-temporal in-
stances to reduce the imbalance between spatially aligned
(static) and non-aligned (dynamic) instances. This imbal-
ance is especially visible in our zero-shot scenario, as op-
posed to prior works that specialize to thing classes, among
which we observe a larger percentage of moving objects.

A.2.3. Segmentation Decoder
Our segmentation decoder follows the design of [3, 4, 12].
Inputs to the decoder are a set of M learnable queries that
interact with voxel features, i.e., our (4D) spatio-temporal
representation of the input sequence. For each query, we es-
timate a spatio-temporal maskM ∈ RM×N , an objectness
score O ∈ RM×2 indicating how likely a query represents
an object and a d-dimensional CLIP token F ∈ RM×d cap-
turing object semantics.

A.2.4. Training
Our network predicts a set of spatio-temporal instances,
parametrized via segmentation masks over the superim-
posed point cloud: m̂j ∈ {0, 1}N , j = 1, . . . ,M , obtained

by sigmoid activating and thresholding the spatio-temporal
maskM. To train our network, we first establish correspon-
dences between our set of predictions {(m̂i,t, idi,k, fi,t) |
t ∈ Tk} and pseudo-labels {(m̃i,t, idi,k, fi,t) | t ∈ Tk}
based on the mask intersection-over-union within temporal
window (we perform bipartite matching using Hungarian
algorithm, as commonly done by Mask transformer-based
methods [12, 18]). Once matches are established, we eval-
uate the following loss:

LSAL−4D = Lobj +Lmask+Ldice+Ltoken+Ltoken aux,
(4)

with a cross-entropy loss Lobj indicating whether a mask
localizes an object, a segmentation loss consists of a binary
cross-entropy Lmask and a dice loss Ldice following [12],
and cosine distanc CLIP token lossesLtoken andLtoken aux

following [12]. As all three terms are evaluated on a se-
quence rather than individual frame level, our network im-
plicitly learns to segment and associate instances over time,
encouraging temporal semantic coherence.

As we are training with noisy pseudo-labels that label
only a portion of the full Lidar point cloud, we use stan-
dard data augmentations (translation, scaling, rotations, cf .,
[12]), as well as FrankenFrustum [13] to train a model that
can segment full Lidar point clouds. We also follow the rec-
ommendation by [13] and remove all unlabeled points (i.e.,
those not covered by our pseudo-labels) from our training
instances.

A.2.5. Inference
The mask inference is done by first multiplying the object-
ness score with the spatio-temporal maskM∈ RM×N and
then performing argmax over each point:

score = max(O ∈ RM×2, dim=-1), (5)

mask = argmax(sigmoid(M∈ RM×N) · score, dim=0).
(6)

As our model directly processes superimposed point clouds
within windows of size K, we perform near-online infer-
ence [5] by associating Lidar masklets across time based
on 3D-IoU overlap via bi-partite matching (as described in
Sec. 3.2.2). For zero-shot prompting, we follow [13] and
first encode prompts specified in the semantic class vocab-
ulary using a CLIP language encoder. Then, we perform
argmax over scores, computed as a dot product between en-
coded queries and predicted CLIP features.

B. Baselines Details

We evaluate several alternative approaches for ZS-4D-LPS,
inspired by multi-object tracking [17] and video-instance
segmentation [10] communities. In this section, we provide
implementation details for these baselines.

Parameter Value

AB3DMOT Parameters [17]

algm ”greedy”
metric ”giou 3d”
thres -0.4
min hits 1
max age 2
Ego-motion compensation Yes

Table 2. Multi-object tracking (MOT) baseline. We report the
key hyperparameters used in our adaptation of [17].

Stationary world (SW). As SemanticKITTI [2] is domi-
nated by static objects, the minimal viable baseline utilizes
ego-motion to propagate masks, estimated by a single-scan
network [13]. To this end, we first process each point cloud
individually using SAL [13]. To associate masks from Pt−1

→ Pt, we perform the following: we transform all point
clouds in the sequence to a common coordinate frame at
time t. Then, we compute for each point pi ∈ Pt a nearest-
neighbor pj ∈ Pt−1. Then for each instance idi that appears
in the current frame Pt, find all the points pi ∈ Pt, where
id(pi) ∈ {idi}. The corresponding nearest points in the pre-
vious frame pj ∈ Pt−1 have id(pj) ∈ {idj1 , idj2 , idj3 ...}.
We determine for each instance id(pi) a track ID via major-
ity voting of id(pj). The threshold of majority voting is set
to 0.5.

Multi-object tracking (MOT). Model-free approaches
that utilize Kalman filters in conjunction with linear or
greedy association of single-scan object detections are
strong baselines for Lidar-based tracking [17]. To this
end, we adapt [17] to associate masks from SAL [13].
Approach by [17] parametrizes object tracks via object-
oriented 3D bounding boxes (parametrized via center,
bounding box size, and yaw-angle). Tracks are propa-
gated from past point clouds to the current state via a
constant-velocity Kalman filter, and associations are deter-
mined based on 3D intersection-over-union (IoU) between
track predictions and detected objects (also parametrized
as object-oriented bounding boxes). We adapt [17] in
our work by first predicting segmentation masks for each
point cloud and then fitting bounding box to each seg-
ment (the box boundary are set as the minimum and maxi-
mum 3D coordinates of the segmentation masks, Bbox =
{xmin, ymin, zmin, xmax, ymax, zmax}). We report our
configuration for [17] in Tab. 2.

Video Instance Segmentation (VIS) This baseline asso-
ciates objects in 3D without explicit sequence-level train-
ing. Specifically, we adapt a video instance segmentation
approach MinVIS [10], that utilizes object queries for asso-
ciating objects at test time within Lidar data. The algorithm
operates as follows. We first generate N object queries per
frame using SAL [13]. Then we match queries from frame
t to frame t+1 using cosine distance as the metric. Finally,

the IDs are transferred based on established matches. As we
only have a limited number of queries, which makes long-
term tracking challenging. To solve this, we first do Min-
VIS within a temporal window of size 2 and then employ
the same cross-window association as our SAL-4D model
prediction for post-processing.

C. Additional Experimental Evaluation

Algorithm 3 Single-scan 3D SAL [13] pseudo-label engine
Input: Lidar point clouds Pt, C camera views Ict , C cam-

era calibrations Kc, timestamps t ∈ 1, . . . , T
Output: {m̃t, ft}, t ∈ 1, . . . , T

1: for each timestamp t do
2: Pt← load lidar(t)
3: m̃t = ∅, ft = ∅
4: m̃DBSCAN

t ← DBSCAN ensamble(Pt)
5: for each camera c do
6: Ict ← load image(t,Kc)
7: mc

t ← SAM(Ict)
8: f c

t ←MaskCLIP [7](Ict , mc
t)

9: m̃c
t ← lift to 3D (P c

t ,m
c
t , Kc)

10: m̃c
t ← DBSCAN refine(m̃c

t , m̃
DBSCAN
t)

11: m̃c
t ← flatten in 3D(m̃c

t)
12: {m̃t, ft} ← insert or merge(m̃t, ft, m̃

c
t , f c

t)
13: end for
14: end for

C.1. Pseudo-label Engine Ablations
DBSCAN. We investigate how to use DBSCAN for
segmentation refinement during pseudo-label generation.
Tab. 3 shows the effect of doing DBSCAN on per scan sep-
arately or on all the scans within the temporal window all
together. The temporal window size is set to 2. The best
pseudo-label is obtained by only enabling DBSCAN per
scan separately. Possibly because doing DBSCAN on all
the scans will harm the segmentation performance on dy-
namic objects, which results in a significant drop in associ-
ation score (Sassoc) when enabled.

C.2. Single-scan SAL pseudo-label improvements
In the process of developing SAL-4D, we also re-think and
improve the single-scan 3D pseudo-labels proposed in [13].
Training on these labels yields the 3D SAL model results
reported in the main paper (we report improved results,
compared to those reported in [13]). We formalize our
novel single-scan label engine in Algorithm 3 and ablate
the performance boosts for class-agnostic and zero-shot Li-
dar Panoptic Segmentation (LPS) of the following improve-
ments in Tab. 4.

Flatten in 3D. In contrast to [13], we switch the order
of Flatten–Lift to Lift–Flatten, i.e., perform the flattening

frames per-frame all-frame Frust. Eval. LSTQ Sassoc Scls IoUst IoUth

Class-agnostic (Semantic Oracle)

2 ✓ ✓ 63.5 68.0 59.3 56.1 71.0
2 ✓ ✓ 60.8 63.9 57.8 54.9 68.9
2 ✓ ✓ ✓ 60.5 63.5 57.7 54.4 69.4

Zero-Shot

2 ✓ ✓ 46.3 66.4 32.3 34.1 33.9
2 ✓ ✓ 44.6 62.6 31.8 33.6 33.3
2 ✓ ✓ ✓ 44.2 62.0 31.5 33.2 33.1

Table 3. Pseudo-label ablations on DBSCAN settings, per-frame or all-frame: We show the effect of doing DBSCAN per scan
separately or on all the scans within the temporal window together on the KITTI validation set. The temporal window size is set to 2. The
results show that doing DBSCAN per-frame gives the best result.

Single-scan 3D pseudo-labels PQ SQ PQth PQst

Class-agnostic (Semantic Oracle) LPS

Original 48.7 73.7 53.1 45.4
+ Flatten in 3D 51.8 78.3 62.1 44.4
+ DBSCAN refine per instance 53.6 80.1 65.2 45.2
+ Flatten via coverage 55.3 79.9 66.0 47.5

Zero-Shot LPS

Original 27.5 71.5 31.7 24.5
+ Flatten in 3D 28.6 73.4 34.0 24.7
+ DBSCAN refine per instance 29.7 75.1 36.0 25.1
+ Flatten via coverage 29.9 74.8 35.2 26.0

Table 4. Single-scan 3D pseudo-label improvements: We report
class-agnostic and zero-shot single-scan Lidar Panoptic Segmen-
tation (LPS) results with several improvements added to the orig-
inal [13] pseudo-labels. Evaluation is performed in the camera
frustum of the SemanticKITTI validation set.

frames LSTQ Sassoc Scls IoUst IoUth

2 30.0 31.1 28.9 31.9 29.5
4 27.6 26.9 28.4 31.6 28.7

Table 5. Pseudo-label ablations on nuScenes dataset on tem-
poral window size: We ablate on temporal window sizes 2 − 4
frames. The quality of pseudo labels with 4 frame temporal win-
dow drops significantly. The stride is set as half the window size.

of overlapping SAM [11] masks after and not before their
unprojection to 3D. To this end, we apply a non-maximum
suppression (NMS) in 3D for the flatten in 3D step in
line 11 of Algorithm 3. Lift–Flatten has the advantage of
resolving potentially ambiguous or edge-case overlaps in
the 2D image after their unprojection to the actual 3D ge-
ometry. Furthermore, we can run our DBSCAN refinement
before the flattening. The performance boost of +3.1 PQ is
particularly noticeable for class-agnostic segmentation.

DBSCAN refine per instance. The original DBSCAN re-
finement step in [13] creates an ensemble of DBSCAN seg-
ments (line 4 in Algorithm 3) by first removing the ground
plane and then collecting the segments of a set of epsilon

density parameters. Afterward, each SAM-based 3D mask
(line 9 in Algorithm 3) with a sufficiently large IoU is re-
placed with a DBSCAN segment. This step refines the
image-based segments and removes false positives or adds
false negatives caused by wrong SAM predictions or un-
projection/parallax errors. Since DBSCAN can only make
statements on non-ground plane points, any ground point is
added back to its original 3D instance.

Our improved DBSCAN refinement mitigates this issue
and removes potential false positives even in the ground
plane. To this end, we run an additional DBSCAN seg-
mentation on each previously replaced instance. We remove
all points that do not belong to the instance, keep potential
ground points, and use the same epsilon density value that
produced the original DBSCAN replacement mask. Using
the same epsilon, we introduce an expected density prior
that allows us to remove all ground points following a dif-
ferent distribution. The additional per-instance refinement
improves class-agnostic and zero-shot Lidar Panoptic Seg-
mentation performance by +1.8 and +1.1 PQ, respectively.

Flatten via coverage. Our final improvement of the
single-scan label engine changes the matching metric for
the 3D NMS applied during flattening (line 11 in Al-
gorithm 3). Instead of IoU, we compute coverage
(intersection-over-minimum) which removes any mask sig-
nificantly covered by another mask independently of the rel-
ative mask sizes. Flattening via coverage removes many
small noisy segments, for example, on large road segments.
In particular, class-agnostic segmentation performance im-
proves by +1.7 PQ points.

C.3. Per-Class Results
We report per-class results for Zero-Shot Lidar Panoptic
Segmentation (PQ) in Tab. 9. Remarkably, not only we
consistently outperform SAL [13] on (almost) all classes
on both, SemanticKITTI and Panoptic nuScenes – we show
we can localize and recognize even instances that the
single-scan model by [13] (motorcyclist, cyclist,
barrier) is unable to segment.

frames LSTQ Sassoc Scls IoUst IoUth

2 46.3 66.4 32.3 34.1 33.9
4 48.0 68.9 33.5 35.3 35.1
8 49.2 70.0 34.6 36.0 36.9
16 49.9 70.0 35.6 36.4 39.0

Table 6. Pseudo-label ablations on temporal window size with-
out cross window association: We ablate our approach on tem-
poral window sizes of size K = {2, 4, 8, 16} with stride K

2
on

SemanticKITTI validation set. We got a similar observation as
the ablation study on the cross-associated version of pseudo-labels
that the association score (Sassoc) improves up to 8 frames, while
zero-shot recognition does not saturate and continues to improve
as the temporal window size increases.

Method label LSTQ Sassoc Scls IoUst IoUth

SAL-4D v1 50.7 67.2 38.3 48.7 28.8
SAL-4D v2 53.2 77.2 36.6 47.9 25.6

Table 7. 4DSAL ablations on training on different version of
labels: We ablate our model on training on different versions of la-
bels on SemanticKITTI. The temporal window size is set to K = 8
with stride 4. Pseudo-label v1: the pseudo-labels are not associ-
ated cross window (i.e., the semantic features are aggregated per
window). Pseudo-label v2: the pseudo-labels are associated cross
window (i.e., the semantic features are aggregated over the whole
sequence).

Method # frames Franken LSTQ Sassoc Scls IoUst IoUth

Frustum

pseudo-labels × 5.8 4.0 8.4 6.9 11.7
SAL-4D 2 × 8.3 5.4 12.7 20.2 2.3
SAL-4D 2 ✓ 42.2 51.1 34.9 45.1 20.8

Table 8. SAL-4D on SemanticKITTI validation set, full (360◦)
point cloud evaluation. On SemanticKITTI, only 14% of all
Lidar points are seen in the left RGB camera, used for pseudo-
labeling. Due to low coverage, when we evaluate pseudo-labels,
we obtain LSTQ of 5.8 (low recall). It is critical to train the
model using FrankenFrustum augmentation to obtain a good gen-
eralization to the whole point cloud (42.2 LSTQ) – only employ-
ing standard data augmentations (rotation, translation, scaling) is
not sufficient (8.3 LSTQ).

C.4. Per-Window vs. Per-Sequence Labels

Tab. 6 evaluates pseudo-labels v1 w.r.t. window size, with-
out cross-window association (i.e., the semantic features
are aggregated per window). In the main paper, we report
v2 labels that additionally apply cross-window association
(i.e., the semantic features are aggregated over the whole se-
quence). We observe similar trends, that association perfor-
mance (Sassoc) improvements saturate at window sizes of
8, while zero-shot recognition (Scls) benefits from a larger
temporal span. However, overall, we obtain better results
with v2 labels, as reported in the main paper.

This is also reflected in Tab. 7, where we train our model
with v1 and v2 pseudo-labels. With v2, we obtain over-

all higher LSTQ (53.2), compared to v1 (50.7). We ob-
serve that training on the cross window associated version
of the pseudo-label improves significantly on association
score Sassoc by about 15%, which demonstrates that our
cross window associated pseudo label, accounting for ob-
jects entering the scene, provides precisely the supervisory
signal for 4D Lidar segmentation. We note that while cross-
window association significantly improves the association
aspect, we observe a less severe drop in terms of zero-shot
recognition (−1.7 Scls).

C.5. Franken Frustum
Tab. 8 shows the generalization ability of our model and the
importance of applying Franken Frustum data augmenta-
tion. The results show that if we only train on 14% of the la-
beled data, the model doesn’t generate well when evaluated
on the full point cloud (8.3 LSTQ) even with standard data
augmentation. By additionally employing Franken Frustum
augmentation, the model generates well outside of the cam-
era Frustum and achieves 42.2 LSTQ.

D. Qualitative Results

Zero-Shot 4D Lidar Panoptic Segmentation. In Fig. 2
and Fig. 3, we visualize ground-truth labels (GT) (left),
pseudo-labels (center), and SAL-4D results (right) on Se-
manticKITTI and Panoptic nuScenes, respectively. We vi-
sualize three different scenes per dataset, shown as superim-
posed point clouds. In the top row, we visualize semantics,
and in the bottom row, we visualize (4D) instances. Impor-
tantly, to visualize semantic classes, we prompt individ-
ual instances with test-time specified prompts that con-
form to class vocabularies of SemanticKITTI and Panop-
tic nuScenes, respectively. Neither pseudo-labels nor our
model has any explicit semantic information about these
object classes. As can be seen, GT labels provide instance
labels only for specific thing classes, whereas our pseudo-
labels and model predictions densely segment point clouds
consistently in space and time.

Our pseudo-labels only cover a small portion of the point
cloud (14%); however, our model learns to segment full
point clouds. Tab. 8 confirms that we can achieve such a
generalization using suitable data augmentations.

Arbitrary prompts. We report additional qualitative re-
sults with arbitrary text prompts in Fig. 1. In particu-
lar, we specify single-class prompts and highlight objects
in orange) for four different prompts. Two are canoni-
cal objects (car and bicycle rider), and two are not
parts of standard class vocabularies in Lidar segmentation:
advertising stand and electric street box.
Nevertheless, our SAL-4D segments all objects correctly
(three different types of advertisement stands and two elec-
tric boxes). We provide images only for reference.

SemanticKITTI [2]

Method a
l
l

c
a
r

b
i
c
y
c
l
e

m
o
t
o
r
c
y
c
l
e

t
r
u
c
k

o
t
h
e
r
-
v
e
h
i
c
l
e

p
e
r
s
o
n

b
i
c
y
c
l
i
s
t

m
o
t
o
r
c
y
c
l
i
s
t

r
o
a
d

p
a
r
k
i
n
g

s
i
d
e
w
a
l
k

o
t
h
e
r
-
g
r
o
u
n
d

b
u
i
l
d
i
n
g

f
e
n
c
e

v
e
g
e
t
a
t
i
o
n

t
r
u
n
k

t
e
r
r
a
i
n

p
o
l
e

t
r
a
f
f
i
c
-
s
i
g
n

SAL 25.3 78.8 18.2 20.3 7.5 8.7 12.6 0.0 0.0 70.3 3.2 28.7 0.0 44.6 3.2 76.5 18.8 30.0 33.6 24.6
SAL-4D 30.8 84.3 26.9 26.7 15.5 16.2 11.9 21.0 1.7 74.1 3.0 33.4 0.0 62.5 9.2 82.4 14.1 35.7 37.3 28.9

nuScenes [9]

a
l
l

b
a
r
r
i
e
r

b
i
c
y
c
l
e

b
u
s

c
a
r

c
o
n
s
t
r
u
c
t
i
o
n
v
e
h
i
c
l
e

m
o
t
o
r
c
y
c
l
e

p
e
d
e
s
t
r
i
a
n

t
r
a
f
f
i
c
c
o
n
e

t
r
a
i
l
e
r

t
r
u
c
k

d
r
i
v
e
a
b
l
e
s
u
r
f
a
c
e

o
t
h
e
r
f
l
a
t

s
i
d
e
w
a
l
k

t
e
r
r
a
i
n

m
a
n
m
a
d
e

v
e
g
e
t
a
t
i
o
n

SAL 41.2 0.6 32.8 60.3 82.9 26.4 48.8 57.3 42.5 31.3 53.1 63.1 1.6 16.3 36.6 33.3 71.7
SAL-4D 45.7 1.1 68.1 60.8 85.3 32.2 73.7 62.3 37.2 33.9 56.4 56.6 0.1 13.7 39.4 35.5 75.0

Table 9. Per-class (zero-shot) results (PQ) for SAL-4D and SAL [13] on SemanticKITTI and nuScenes-Panoptic validation sets. Our
SAL-4D consistently outperforms SAL on (almost) all classes. Due to limited temporal context, SAL fails to segment smaller objects such
as motorcyclist, cyclist, barrier. SAL-4D substantially improves segmentation of such objects.

Advertising Stand Car Bicycle Rider Electric Street Box

Figure 1. Prompt examples. We visualize the output of our model (we highlight objects in orange) for four different prompts: two
canonical car and bicycle rider, and two “arbitrary” object, advertising stand and electric street box. As can be
seen, all are segmented correctly, including stationary and moving instances. Remarkably, all three different types of advertising
stand, and both instances of electric street box are correctly segmented. We provide images for reference; images are not
used as input to our model. Best seen in color, zoomed.

GT Pseudo-labels SAL-4D

GT Pseudo-labels SAL-4D

GT Pseudo-labels SAL-4D

Figure 2. Qualitative results on SemanticKITTI. We show ground-truth (GT) labels (first column), our pseudo-labels (middle column),
and SAL-4D results (right column). We show three scenes (we superimpose point clouds). For each, we show semantic predictions in the
first row and instances predictions in the second row. Importantly, we visualize semantics for pseudo-labels via zero-shot prompting
whereas pseudo-labels do not provide explicit semantic labels, only CLIP tokens.

GT Pseudo-labels SAL-4D

GT Pseudo-labels SAL-4D

GT Pseudo-labels SAL-4D

Figure 3. Qualitative results on Panoptic nuScenes. We show ground-truth (GT) labels (first column), our pseudo-labels (middle column),
and SAL-4D results (right column). We show three scenes (we superimpose point clouds). For each, we show semantics predictions in the
first row and instances predictions in the second row. Importantly, we visualize semantics for pseudo-labels via zero-shot prompting;
pseudo-labels do not provide explicit semantic labels, only CLIP tokens. In nuScenes, points also reflect from the ego-vehicle (seen as
a car-shaped object in the center, replicated along the trajectory when the vehicle is moving; see 2nd and 3rd scene examples).

References
[1] Mehmet Aygün, Aljoša Ošep, Mark Weber, Maxim Maxi-

mov, Cyrill Stachniss, Jens Behley, and Laura Leal-Taixé.
4d panoptic lidar segmentation. In IEEE Conf. Comput. Vis.
Pattern Recog., 2021. 3, 4

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
manticKITTI: A Dataset for Semantic Scene Understanding
of LiDAR Sequences. In ICCV, 2019. 5, 8

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Eur. Conf. Com-
put. Vis., 2020. 4

[4] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In IEEE Conf.
Comput. Vis. Pattern Recog., 2022. 4

[5] Wongun Choi. Near-online multi-target tracking with aggre-
gated local flow descriptor. In Int. Conf. Comput. Vis., 2015.
4

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal convnets: Minkowski convolutional neural
networks. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.
4

[7] Zheng Ding, Jieke Wang, and Zhuowen Tu. Open-
vocabulary universal image segmentation with maskclip. In
Int. Conf. Mach. Learn., 2023. 5

[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Rob. Sci. Sys., 1996. 1

[9] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Val-
ada. Panoptic nuscenes: A large-scale benchmark for lidar
panoptic segmentation and tracking. RAL, 2021. 8

[10] De-An Huang, Zhiding Yu, and Anima Anandkumar. Min-
vis: A minimal video instance segmentation framework
without video-based training. In Adv. Neural Inform. Pro-
cess. Syst., 2022. 4, 5

[11] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Int. Conf. Comput. Vis., 2023. 1, 2, 6

[12] Rodrigo Marcuzzi, Lucas Nunes, Louis Wiesmann, Jens
Behley, and Cyrill Stachniss. Mask-based panoptic lidar seg-
mentation for autonomous driving. IEEE Rob. Automat. Let-
ters, 2023. 3, 4

[13] Aljosa Osep, Tim Meinhardt, Francesco Ferroni, Neehar
Peri, Deva Ramanan, and Laura Leal-Taixe. Better call sal:
Towards learning to segment anything in lidar. In Eur. Conf.
Comput. Vis., 2024. 1, 3, 4, 5, 6, 8

[14] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In Int. Conf. Mach. Learn., 2021. 1, 3

[15] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman

Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 1, 2

[16] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In Adv. Neural Inform. Process. Syst., 2020.
4

[17] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
3D Multi-Object Tracking: A Baseline and New Evaluation
Metrics. In Int. Conf. Intel. Rob. Sys., 2020. 4, 5

[18] Kadir Yilmaz, Jonas Schult, Alexey Nekrasov, and Bastian
Leibe. Mask4former: Mask transformer for 4d panoptic seg-
mentation. In Int. Conf. Rob. Automat., 2024. 3, 4

	Implementation Details
	Pseudo-label engine
	Track–Lift–Flatten
	Labeling Arbitrary-Length Sequences

	Model
	Backbone
	Superimposing Point Clouds
	Segmentation Decoder
	Training
	Inference

	Baselines Details
	Additional Experimental Evaluation
	Pseudo-label Engine Ablations
	Single-scan SAL pseudo-label improvements
	Per-Class Results
	Per-Window vs@汥瑀瑯步渠.. Per-Sequence Labels
	Franken Frustum

	Qualitative Results

