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1. Experimental Details

1.1. Auxiliary Views
Our learning framework leverages multiple transformed
views of the original natural image. Specifically, we ap-
ply off-the-shelf models to transform natural images into
art-stylized and colorized depth images. For the art-stylized
transformation, we utilize the pre-trained StyleFormer [16]
model, which is trained on the WikiArt [11] dataset. For each
natural image, we randomly select a target style from the
WikiArt [11] dataset. For the colorized depth transformation,
we employ the off-the-shelf ZoeDepth [1] model, pre-trained
on the NYU Depth v2 [12] and KITTI [5] datasets. Addi-
tionally, for edge maps used in our ablation study, we apply
the off-the-shelf RCF [9] model for edge detection. Exam-
ples of natural, art-stylized, and colorized depth images are
shown in Fig. 1. Notably, no human annotations are used for
generating depth maps or stylized images, ensuring that our
method avoids any information leakage.

1.2. Experiments on the CLEVR Dataset
The CLEVR dataset [6] is a synthetic dataset featuring ob-
jects characterized by four attributes:
• Size: large, small
• Shape: cube, sphere, cylinder
• Color: gray, red, blue, green, brown, purple, cyan, yellow
• Material: rubber, metal
In this work, we focus on two attributes—color and mate-
rial—for illustrative simplicity. Specifically, we designate
red metal objects as the known class, while objects with any
other attribute combination are treated as unknown classes.
The CLEVR dataset [6] comprises 70,000 training images
and 15,000 validation images. We apply vanilla DINO-
DETR [18] and train the model under two settings: with
and without colorized depth images and stylized images.
When using colorized depth images, the model randomly
selects either a natural image, a depth map or a stylized
image as input, each with equal probability. With 300 de-
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Algorithm 1 Pseudo-code of Parameter Perturbation in a
PyTorch-like style

# image: input image tensors
# model: the detector
# noise_std: the standard deviation of gaussian noise
def perturbation_forward(image, model, noise_std):

# adding gaussian noise for each parameter
for name, param in model.named_parameters():

param += torch.randn_like(param) * noise_std
output = model(image)
return output

noising queries in DINO-DETR [18], we train the model
for 2,000 iterations with a batch size of 8, while retaining
the remaining training configurations identical to those of
vanilla DINO-DETR [18].

1.3. Object Proposal Generation
Thanks to large-scale self-supervised learning, neural net-
works have shown remarkable capabilities in object recog-
nition and localization [10, 15]. Leveraging this advance-
ment, unsupervised instance segmentation [13, 14] has re-
cently achieved significant progress. By benefiting from
unsupervised training, these methods exhibit strong instance
awareness, making them well-suited for generating object
proposals in our work. Throughout this paper, we employ the
ImageNet-pretrained Cascade R-CNN [2] from CutLER [14]
to infer object proposals from the dataset. For each training
image, we apply Non-Maximum Suppression (NMS) with
a threshold of 0.7 and select the top-10 proposals based on
prediction confidence.

2. Robustness against Parameter Perturbation
Numerous studies [3, 7, 17, 19] have demonstrated that neu-
ral networks trained with flatten minima exhibit superior gen-
eralization ability, i.e., , the minima of the model should be
in wide valleys rather than narrow crevices [3, 7, 17, 19]. In
such cases, small perturbations to model parameters should
not significantly degrade the performance of a model with
strong generalization ability. Consequently, we can assess a
model’s generalization by introducing random perturbations
to its parameters. Specifically, as detailed in Alg. 1, we inject
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Figure 1. Visualization of three views used in our method, natural, art-stylized, and colorized depth images, respectively.
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Figure 2. ARb
100 under different noisy rates. All models are

evaluated in the VOC→Non-VOC setting.

Gaussian noise with varying standard deviations into all net-
work parameters and evaluate the resulting performance. All
models are trained on VOC classes and evaluated on Non-
VOC classes. As illustrated in Fig. 2, we define the noise
rate as the standard deviation of the Gaussian noise. With
increasing noise rates, both our model and DINO-DETR
experience performance degradation. However, at high noise
rates, our method consistently outperforms the baseline by
a substantial margin, demonstrating greater robustness to
parameter perturbations.
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Figure 3. Examples of distorted images on COCO 2017 [8] validation set.
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Figure 4. The distribution of prediction scores from the baseline DINO-DETR [18] and our v-CLR under four types of image
distortion. For visualization clarity, we calculate the distribution of top-50 prediction scores.

3. Robustness against Image Distortion

To verify the effectiveness of our method under different
input perturbations, we evaluate our model under four popu-
lar distortions, Contrast, Gaussian Noise, Snow, and Frost.

As shown in Fig. 3, we generate validation images with
these distortions and evaluate the model’s performance on
them. We examine the robustness of our v-CLR approach
against different types of image distortions. In Fig. 4, we
plot the distribution of prediction scores for both the baseline



Method ARb
1 ARb

10 ARb
100

SiameseDETR [4] 12.4 23.0 30.7
v-CLR (ours) 16.8 42.7 60.2

Table 1. Comparison with Siamese DETR [4]. For a fair com-
parison, all experiments are conducted on the Non-VOC→VOC
setting with Deformable-DETR [20].

DINO-DETR [18] and our method, with and without image
distortions. Our method (purple) consistently yields higher
prediction scores than the baseline (green) on undistorted
images. For distorted images, the distribution of the distorted
baseline (red) exhibits a heavier right tail compared to the
undistorted baseline (green), indicating that distortions re-
duce DINO-DETR’s prediction confidence. In contrast, our
method demonstrates greater robustness to image distortions,
as the distributions of prediction scores for distorted and
undistorted images show similar right-tail behavior. Surpris-
ingly, the prediction score distribution for our method on
distorted images exhibits even lower variance and a slightly
higher mean than on undistorted images. This further sug-
gests that image distortions have minimal impact on our
model’s prediction confidence.

4. Comparison with SiameseDETR
We further compare our method with Siamese DETR [4], a
recent self-supervised DETR-like object detector. Siamese
DETR employs two augmented views to enforce instance-
level consistency. Although it also utilizes transformations,
its motivation differs substantially from ours, and the trans-
formations in Siamese DETR do not specifically address tex-
ture bias. We evaluate both methods in the Non-VOC→VOC
setting, as shown in Tab. 1, ensuring a fair comparison since
VOC classes are unknown to both models. Experimental
results reveal that our method surpasses Siamese DETR by
a significant margin across all evaluation metrics, underscor-
ing the effectiveness of our proposed framework.
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Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023. 1

[11] Babak Saleh and Ahmed Elgammal. Large-scale classification
of fine-art paintings: Learning the right metric on the right
feature. arXiv preprint arXiv:1505.00855, 2015. 1

[12] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from rgbd
images. In Eur. Conf. Comput. Vis., 2012. 1

[13] Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz,
Anima Anandkumar, Chunhua Shen, and Jose M Alvarez.
Freesolo: Learning to segment objects without annotations.
In IEEE Conf. Comput. Vis. Pattern Recog., 2022. 1

[14] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra.
Cut and learn for unsupervised object detection and instance
segmentation. In IEEE Conf. Comput. Vis. Pattern Recog.,
2023. 1

[15] Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li,
Shell Xu Hu, James L Crowley, and Dominique Vaufreydaz.
Tokencut: Segmenting objects in images and videos with
self-supervised transformer and normalized cut. IEEE Trans.
Pattern Anal. Mach. Intell., 2023. 1

[16] Xiaolei Wu, Zhihao Hu, Lu Sheng, and Dong Xu. Style-
former: Real-time arbitrary style transfer via parametric style
composition. In Int. Conf. Comput. Vis., 2021. 1

[17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,
and Oriol Vinyals. Understanding deep learning (still) re-
quires rethinking generalization. Communications of the
ACM, 2021. 1

[18] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 1, 3, 4

[19] Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. Deep mutual learning. In IEEE Conf. Comput.
Vis. Pattern Recog., 2018. 1



[20] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 4


	Experimental Details
	Auxiliary Views
	Experiments on the CLEVR Dataset
	Object Proposal Generation

	Robustness against Parameter Perturbation
	Robustness against Image Distortion
	Comparison with SiameseDETR

