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7. Addition Details of the AIM-Fair

Details for Instructing LLM. For the CelebA dataset [26],
we use the following instruction as input for GPT-4, with all
other attributes derived from the CelebA dataset:

Generate {Number} diverse text prompts for human
face attributes that always include {Target Attribute} and
{Protected Attribute}. Each prompt should also consider
some of the following attributes: 5 o’clock shadow, arched
eyebrows, attractive, bags under eyes, bald, bangs, big lips,
big nose, black hair, blurry, brown hair, bushy eyebrows,
chubby, double chin, eyeglasses, goatee, grey hair, heavy
makeup, high cheekbones, mouth slightly open, moustache,
narrow eyes, no beard, oval face, pale skin, pointy nose, re-
ceding hairline, rosy cheeks, sideburns, straight hair, wavy
hair, wearing earrings, wearing a hat, wearing lipstick,
wearing necklace, wearing necktie, and young. Addition-
ally, each prompt should include a variety of head poses,
such as slight tilts, turns, and different head orientations
(e.g., head turned slightly left, tilted upward, facing slightly
downward) to ensure diversity in the generated image an-
gles. The prompts should be for a “Portrait face photo of
a,” ensuring the image only contains the head part.

For the UTKFace dataset [60], given the broad age dis-
tribution, we use the following instruction for GPT-4:

Generate {Number} diverse text prompts for human
face attributes that always include {Target Attribute} and
{Protected Attribute}. Include details about facial expres-
sions, hairstyles, and any other distinguishing features that
can help in generating a realistic image. And also contain
age start from 1 and end at 100. The prompts should be
for a “Portrait face photo of a,” ensuring the image only
contains the face part.
Algorithm for the Selective Fine-Tuning. The algorithm

Algorithm 1 Pseudo Code for the Selective Fine-Tuning
Require: Pre-trained model fω(x); Unfair real dataset

(XR, YR) → DR; Unfair synthetic dataset (XS1 , YS1) → DS1 ;
Fair synthetic dataset (XS2 , YS2) → DS2 ; Top-k value k.

Ensure: Fine-tuned model fω→(x)
1. Compute Gradients:

gR ↑ ↓ωL(fω(XR), YR)
gS1

↑ ↓ωL(fω(XS1), YS1)
gS2

↑ ↓ωL(fω(XS2), YS2)
2. Calculate Gradient Differences:

!1 ↑ |gR ↔ gS1
|, !2 ↑ |gS1

↔ gS2
|

3. Select Parameters to Fine-Tune:

R1 ↑ parameters sorted ascendingly by !1

R2 ↑ parameters sorted descendingly by !2

K ↑ top-k parameters in R1 ↗ top-k parameters in R2

4. Update Model Parameters:

for each parameter ωj do

if ωi → K then

Set ωjrequires grad ↑ True
else

Set ωj .requires grad ↑ False
end if

end for

5. Fine-tune the Model:

Train fω(x) on (XS2, YS2) using parameters in K

of the proposed selective fine-tuning method is depicted in
Algorithm 1.

8. Additional Experimental Results

Ablation Analysis on ViT Model. We also applied our
method to the ViT-32-Small model on CelebA. As shown
in Tab. 8, our approach consistently outperforms other train-
ing methods, achieving the highest overall accuracy and the

Baseline (Real Data) Data Supp (Real and Synthetic Data) Our AIM-Fair (Real and Synthetic Data)

Figure 6. T-SNE visualizations for the learned representations on CelebA with target attribute Smiling and protected attribute Male.



Table 8. Comparisons of varied training strategies with ViT-32-Small on CelebA.

Methods
T: Smiling; P: Male T: Smiling; P: Young

Target Protected ACC (↑) WST (↑) EO (↓) STD (↓) Target Protected ACC (↑) WST (↑) EO (↓) STD (↓)
P=0 P=1 P=0 P=1

Baseline t=0 82.59 98.31 89.00 71.12 20.18 10.91 t=0 75.37 95.41 89.32 75.37 14.61 8.17t=1 95.76 71.12 t=1 94.86 85.69

Trained on Synthetic Data t=0 90.10 86.90 86.19 83.73 2.32 2.61 t=0 82.68 89.00 86.31 82.68 3.53 2.27t=1 83.73 83.85 t=1 85.01 85.16

Data Supplementation t=0 81.54 97.89 88.97 72.89 19.72 10.35 t=0 76.43 95.39 89.47 76.43 13.75 7.65t=1 95.99 72.89 t=1 94.43 85.90

Fully Fine-Tuning t=0 89.68 91.68 89.37 83.95 4.17 2.92 t=0 83.83 92.24 88.80 83.83 5.28 3.06t=1 90.01 83.95 t=1 88.86 86.85

LoRA [16] t=0 91.20 91.93 90.79 86.20 3.14 2.37 t=0 83.38 91.15 89.81 83.38 5.29 3.47t=1 91.76 86.20 t=1 92.41 89.61

LTGC [61] t=0 78.17 95.20 88.75 78.17 17.20 8.63 t=0 80.20 96.64 89.18 80.20 13.20 6.80t=1 96.82 79.44 t=1 93.09 83.13

Selective Fine-Tuning t=0 89.90 91.20
90.89 87.79 3.27 1.85

t=0 84.96 92.80
90.30 84.96 5.12 2.98t=1 92.84 87.79 t=1 91.45 89.05

best worst-group accuracy. This demonstrates its general-
ization capability across different models. We also experi-
mented by comparing our selective fine-tuning with LoRA
[16] fine-tuning, and as shown in Tab. 8, our approach con-
sistently outperforms LoRA on both datasets. We believe
that LoRA is effective for parameter-efficient adaptation but
restricts the model’s ability to correct deeply embedded bi-
ases, while our method selectively fine-tunes the layers that
contribute most to bias, ensuring targeted fairness improve-
ments. Additionally, we compare our method with LTGC
[61] which was trained with a mix-up of real and synthetic
data for addressing the long-tail problem. As shown in the
results in Tab. 9, while the mix-up method successfully ad-
dresses long-tail issues, it does not appear to enhance model
fairness.
Evaluations of Different Number of Synthetic Data. We
also evaluate fine-tuning with varying amounts of balanced
synthetic data on UTKFace. Similar to the experiment on
the CelebA, we use the real training data count as a refer-
ence and set different ratios to determine the number of syn-
thetic data. As shown in Tab. 10, the results demonstrate the
consistency with our observations on the CelebA.

9. Visualizations

Latent Visual Feature Distributions. To further illustrate
how our method works, we provide visualizations of the
learned representations using t-SNE in Fig. 6. We divide the
CelebA test set into four groups based on target and spuri-
ous attributes. We observe that the baseline ERM, trained
either solely on biased real data or on a mix of real and syn-
thetic data, learns spurious correlations, resulting in repre-
sentations that can be separated by the spurious attributes.

Table 9. Comparisons of varied training strategies with ResNet-18
on CelebA (T=Smiling, P=Male).

Methods Target Protected ACC (↑) WST(↑) EO (↓) STD (↓)
P=0 P=1

Balseline t=0 83.57 98.50
89.23 71.52 23.84 10.65t=1 95.36 71.52

LTGC [61] t=0 79.48 97.93 89.05 75.42 21.27 10.03t=1 96.65 75.42

AIM-Fair

(Ours)

t=0 88.16 91.40 89.02 84.20 6.07 2.74t=1 90.25 84.20

Table 10. Classification results on UTKFace with different num-
bers of synthetic data.

Ratio To
Real Data Target Protected ACC (↑) WST (↑) EO (↓) STD (↓)

P=0 P=1

Baseline t=0 79.58 96.16 88.86 79.58 16.59 7.26t=1 95.75 83.96

0.5 t=0 82.61 89.35 88.91 82.61 6.74 3.78t=1 92.06 91.61

1.0 t=0 84.26 89.08 88.30 84.26 4.81 2.41t=1 90.62 89.25

1.5 t=0 83.70 89.15 88.23 83.70 5.45 2.65t=1 89.84 90.25

2.0 t=0 83.04 89.76
88.98 83.04 6.73 3.51t=1 91.71 91.41

In contrast, the representations learned by our AIM-Fair
method contain less information on spurious correlations,
thereby contributing to fairer classification.
More Generated Contextual Images. We provide ad-
ditional generated contextual images with target attribute



(a) Generated contextual images for CelebA with target attribute Smiling and protected attribute Young.

(b) Generated contextual images for UTKFace with target attribute Female and protected attribute White.

Figure 7. Generated contextual images.



Figure 8. Distribution of selected parameters.

Table 11. Classification results on CelebA dataset (T=Male,
P=Young) under different training strategies.

Methods Target Protected ACC
(↑)

WST
(↑)

EO
(↓)

STD
(↓)P=0 P=1

Baseline t=0 93.50 98.80
97.16 93.50 5.37 2.58t=1 98.98 93.99

Fully
Fine-Tuning

t=0 95.19 97.83 96.47 93.79 3.24 1.55t=1 96.88 93.79

AIM-Fair
(Ours)

t=0 94.41 97.34 96.00 93.86 3.00 1.35t=1 95.83 93.86

Smiling and protected attribute Young and target attribute
Female and protected attribute White in Fig. 7. Fig. 7a
demonstrates that the generated images of smiling young
individuals include diverse genders, hairstyles, hair colours,
accessories, and head poses. Fig. 7b shows that the gener-
ated images of white females include a range of ages, facial
expressions, hairstyles, hair colours, accessories, and head
poses. This diversity in unmentioned attributes of the plain
prompt helps mitigate bias related to these attributes.
Generated Mask Distribution. We analysed the distribu-
tion of the selected fine-tuned parameters across different
layers. Our empirical results in Fig. 8 show that most of
the selected parameters are located in early layers – this is
consistent across different datasets.

10. Failures and Limitations

Our method still faces challenges in enhancing model fair-
ness while retaining utility. As shown in Tab. 11, the base-
line results indicate that the model exhibits only a small bias
on the protected attribute. In this setting, our method im-
proves model fairness, but it sacrifices accuracy by 1.16%.
Additionally, compared to the fully fine-tuning method, our
approach achieves better fairness but still results in lower
accuracy. We argue that when the model achieves very high
accuracy across all groups, it becomes challenging for our
method to distinguish which parameters are sensitive to do-
main shift and which are sensitive to group shift. To ad-
dress this limitation, further effort should be invested either
in improving the synthetic data generation process or in de-
signing strategies for faithful synthetic data selection.
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