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Vision Token Reduction

Supplementary Material

This document supplements the main paper as follows.

» Sec. 6.1 provides the detailed results of G-Search on 12
benchmarks.

e Sec. 6.2 applies our method on larger MLLMs, e.g.,
LLaVA-1.5-13B, and InternVL2-26B. Our method con-
sistently boosts the efficiency of MLLMs in various sizes.

» Sec. 6.3 provides the detailed results to show that our G-
Search can further improve the efficiency of MLLMs on
top of prompt-agnostic methods.

* Sec. 7.1 provides more metrics for efficiency evaluations,
e.g., Multiply Accumulate Operations (MACs), and per-
token decoding time cost.

e Sec. 7.2 compares our method with the I/O aware ap-
proach FlashAttention2 [9, 10]. Our method runs faster
and is able to trade off effectiveness and efficiency.

* Sec. § evaluates our method on video benchmarks. The
reduction strategy searched by our method on image un-
derstanding generalizes to video understanding.

e Sec. 9.1 shows how to set the budget for P-Sigmoid with
theoretical analysis.

e Sec. 9.2 provides the values of k£ found by our P-Sigmoid.
The value varies by MLLMs.

e Sec. 9.3 illustrates the correlations of MLLM layers in
terms of vision tokens sorted by attention scores. The
main finding of this paper holds for various MLLMs.

e Sec. 9.4 evaluates G-Search on the long context bench-
mark, MM-NIAH [40].

* Sec. 9.5 shows the efficiency of G-Search with various
token length.

* Sec. 9.6 talks about limitations of this paper and provides
potential solutions.

6. Detailed results on 12 benchmarks
6.1. G-Search and existing prompt-aware methods

Table 6 provides the concrete results on the 12 image un-
derstanding benchmarks for the proposed G-Search and
several prompt-aware vision token reduction methods, i.e.,
VTW [26], PDrop [44], and FastV [5], on top of various
MLLMs. The results are complementary to Table 1 of
the main paper. Our method consistently reduce compu-
tational cost without significant performance drops, while
other methods may fail in preserving the performance.

6.2. G-Search on larger MLLM:s.

Besides MLLMSs explored in the main paper, we apply G-
Search on top of larger MLLMs, e.g., LLaVA-1.5-13B and

InternVL2-26B, and report the results in the last two blocks
of Table 6. The performance of InternVL2-26B on MMMU
is not reported because it runs out of GPU memories dur-
ing inference probably due to too long contexts. Thus, we
compute the average accuracy for InternVL2-26B on the
rest 11 benchmarks. The results on larger MLLMs are in
line with those on smaller MLLMs. That is, the proposed
G-Search requires less computations without a significant
performance drop, while other methods either require much
more computations or suffer from performance drops. Such
results indicate that our method is robust on various sizes of
models and scales up well.

6.3. G-Search on top of prompt-agnostic methods

Table 7 provides the concrete results of applying the pro-
posed G-Search on two prompt-agnostic vision token reduc-
tion methods, i.e., TokenPacker [20], and DeCo [46]. The
results are complementary to Table 2 of the main paper. As
one can see, our G-Search significantly reduces the com-
putational cost with slight variances in performance on all
benchmarks, which clearly demonstrates that our method is
flexible and robust in various cases.

7. Extra evaluations of computational costs

Not only can our methods reduce the number of vision to-
kens to accelerate the prefilling phrase of the inference,
but also it reduces the KV-Cache to speed up the decoding
phrase. In addition to the prefilling time cost in the main pa-
per, we report more metrics for computational costs in this
section, including MACs, and the per-token time cost at the
decoding stage.

7.1. Comparison to existing reduction methods.

Table 8 provides more metrics to evaluate the efficiency for
Scenario 1. The proposed G-Search is compared with other
completing reduction methods, i.e., VTW [26], PDrop [44],
and FastV [5]. The results are complementary to Table 1 of
the main paper. As shown in Table 8, our method achieves
good per-token decoding time cost, as well as other metrics
like prefilling time cost.

Table 9 provides more efficiency metrics for Scenario II.
As a complement to Table 3 of the main paper, we compare
P-Sigmoid with the prior SOTA FastV (R=87.5%) on top
of various MLLMs. The budget of P-Sigmoid is set simi-
lar as FastV. As we can see, compared to FastV, P-Sigmoid
achieves much better performance with similar or slightly
less memory cost, TFLOPs, MACs and time costs.
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LLaVA-1.5-7B 9.18 4897 | 1743.2 658 62.8 |37.6 21.6 556|464 17.7 29.1 |86.1 550 47.6
+ VTW 5.19 4432 |1740.6 659 564 |37.8 212 555|165 13.8 14.1|86.0 54.6 47.7
+ PDrop 495 487017149 655 619 |38.0 219 552|464 17.2 289 86.1 555 46.6
+ FastV (R=50%) | 5.47 48.70 | 1760.8 64.8 61.8 |37.7 21.8 556|462 179 27.8|84.7 562 47.1
+ G-Search (Ours) | 3.95 48.77 | 1741.1 653 62.1 | 37.7 22.0 555|460 17.8 28.1 |855 563 46.7
InternVL2-1B 462 59.85|17783 632 55.1 346 326 62.6|69.1 713 820|873 515 453
+ VTW 3.73 4113 | 1767.5 629 425|338 209 60.7 | 11.7 122 11.7 | 839 464 437
+ PDrop 388 5370 | 1764.3 62.0 534|347 292 595|593 510 524|867 499 433
+ FastV (R=50%) | 3.91 54.85|17474 61.8 53.8|349 309 59.8|62.1 587 558|851 484 44.6
+ G-Search (Ours) | 3.84 59.19 | 1750.7 62.5 55.0|34.8 325 62.1|683 694 79.0|87.0 519 452
InternVL2-2B 8.10 61.94 | 1821.7 725 599|347 338 725|720 750 87.2|884 340 483
+ VTW 550 37.84|15963 642 42.6(323 250 66.8|10.7 11.0 11.3]67.8 229 425
+ PDrop 593 5898 | 1800.1 71.5 582|339 326 70.6|702 67.6 737|859 332 46.2
+ FastV (R=50%) | 5.85 5991 | 17742 71.8 587|341 33.1 71.6|70.7 69.6 757 |88.0 329 493
+ G-Search (Ours) | 5.64 61.22 | 1831.7 719 59.4|348 33.6 719|71.6 71.6 844|882 340 47.7
InternVL2-4B 13.97 68.16 | 20844 77.6 62.0 458 364 77.8|741 81.0 89.6 |87.1 59.7 523
+ VIW 872 49.01 | 20279 764 51.1|458 267 773|147 148 152|852 565 52.0
+ PDrop 835 6694 |2084.5 774 614|463 355 77.0|727 774 822|87.0 609 50.9
+ FastV (R=50%) | 9.01 66.19 | 2080.1 77.6 61.6 |459 352 775|725 751 765]|86.7 60.0 51.5
+ G-Search (Ours) | 8.69  67.65 | 20823 774 61.8 |46.0 364 775|739 802 869 |87.0 595 508
InternVL2-8B 24.10 70.83 | 2205.3 81.8 62.7|48.6 369 824 |76.6 826 919|867 655 555
+ VIW 13.71 52.51|2195.1 81.6 56.6 |46.7 314 81.8|189 163 175|858 634 51.7
+ PDrop 13.13 69.19 | 2193.1 814 623 458 357 804|756 81.6 863|867 64.6 515
+ FastV (R=50%) | 14.58 69.42 | 22142 812 62.0|48.1 373 81.1|756 802 834|865 646 538
+ G-Search (Ours) | 12.24 70.10 | 2216.7 814 62.6 |48.6 362 82.1|76.0 81.1 89.8|86.9 651 523
LLaVA-1.5-13B 1744 49.77 | 1818.0 68.8 633|356 229 593|476 182 303|859 550 454
+ VIW 9.77 4693 | 1828.1 68.7 60.1 | 354 226 59.3|337 155 15.1|86.0 557 45.6
+ PDrop 9.29 4924 | 18104 684 63.0|36.1 233 59.1|47.6 183 235 |86.0 553 456
+ FastV (R=50%) | 10.18 49.69 | 1857.4 684 62.6|36.1 235 589|472 183 289|850 557 454
+ G-Search (Ours) | 6.45 49.65 | 18355 68.2 62.4 |36.6 23.7 589 |47.6 185 29.0|858 544 45.1
InternVL2-26B 11145 741222728 81.8 652 | - 37.8 83.1|820 84.7 905|880 67.7 534
+ VTW 8494 67.12 22934 818 633 | - 38.0 833|553 616 63.6|88.0 667 54.7
+ PDrop 83.30 73.12 | 22458 81.6 652 | - 372 819 |81.8 84.0 832|882 675 536
+ FastV (R=50%) | 86.25 72.75|22446 813 648 | - 375 821|810 83.0 825|874 672 534
+ G-Search (Ours) | 7898 73.72 | 22535 81.7 651| - 37.7 82.6|81.8 844 88.0|88.2 672 538

Table 6. Detailed results of prompt-aware methods on 12 benchmarks. InternVL2-26B on MMMU is not reported due to the out-of-
memory issue on our platform. Average accuracy for InternVL2-26B is averaged on the other 11 benchmarks

7.2. Comparison to FlashA ttention.

FlashAttention is a widely adopted I/O aware approach to
accelerate transformer-based models like LLMs. Unlike to-
ken reduction methods, it lowers down the number of times
to read and write memories instead of reducing FLOPs.

Evaluation on 12 benchmarks used in the main pa-

per: We compare our method to the latest version of
FlashAttention, i.e. FlashAttention2 [9], on top of LLaVA-
1.5-7B and InternVL2-8B. We evaluate models with half-
precision floating-point (specifically bfloat16 is used) be-
cause FlashAttention2 only supports this data format. Thus,
the time cost of MLLMs in this section is lower than that
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TokenPacker 327 47.60 | 1726.1 645 61.7 | 37.1 219 550 | 41.7 168 232 | 86.1 535 48.0
+ G-Search (Ours) | 2.12 47.68 | 1756.4 64.6 613 |37.1 220 555 | 41.8 162 228 | 86.8 525 4838
A -1.15  +0.08 | +303 +0.1 -04| 00 +0.1 +05 | +01 -06 -04|+0.7 -1.0 +0.8
DeCo 326 4697 | 17141 643 614|372 214 548 | 40.1 158 224 | 849 533 469
+ G-Search (Ours) | 2.16 46.71 | 1697.6 645 60.7 | 37.0 21.1 547 | 400 156 224 | 8.0 524 465
A -1.10  -0.26 -165 +02 -07|-02 -03 -01]| -01 -02 00]+01 -09 -04
Table 7. Detailed results for G-Search applied on top of prompt-agnostic methods.
Base MLLM Average Memory Prefilling Decoding
+ Method accuracyl  cost) TFLOPs| TMACs| # Params (B) time cost| time cost]
LLaVA-1.5-7B 48.97 1.000 9.18 4.59 6.76 0.625 0.181
+ VIW 4432 0.500 5.19 2.60 6.76 0.385 0.134
+ PDrop 48.70 0.469 4.95 2.47 6.76 0.381 0.123
+ FastV (R=50%) 48.70 0.531 5.47 2.73 6.76 0.387 0.136
+ G-Search (Ours) 48.77 0.340 3.95 1.98 6.76 0.301 0.117
InternVL2-1B 59.85 1.000 4.62 2.31 0.94 0.384 0.123
+ VTW 41.13 0.500 3.73 1.86 0.94 0.331 0.114
+ PDrop 53.70 0.583 3.88 1.94 0.94 0.336 0.114
+ FastV (R=50%) 54.85 0.542 391 1.96 0.94 0.342 0.120
+ G-Search (Ours) 59.19 0.527 3.84 1.92 0.94 0.333 0.114
InternVL2-2B 61.94 1.000 8.10 4.05 2.21 0.598 0.172
+ VTW 37.84 0.500 5.50 2.75 2.21 0.439 0.138
+ PDrop 58.98 0.583 5.93 2.96 2.21 0.452 0.140
+ FastV (R=50%) 59.91 0.542 5.85 292 221 0.451 0.135
+ G-Search (Ours) 61.22 0.532 5.64 2.82 2.21 0.444 0.132
InternVL2-4B 68.16 1.000 13.97 6.98 4.15 0.969 0.256
+ VIW 49.01 0.500 8.72 4.36 4.15 0.649 0.189
+ PDrop 66.94 0.469 8.35 4.17 4.15 0.627 0.190
+ FastV (R=50%) 66.19 0.531 9.01 4.50 4.15 0.652 0.199
+ G-Search (Ours) 67.65 0.488 8.69 4.34 4.15 0.645 0.190
InternVL2-8B 70.83 1.000 24.10 12.05 8.08 1.518 0.388
+ VIW 52.51 0.500 13.71 6.85 8.08 0.927 0.251
+ PDrop 69.19 0.469 13.13 6.56 8.08 0.915 0.249
+ FastV (R=50%) 69.42 0.531 14.58 7.29 8.08 0.998 0.266
+ G-Search (Ours) 70.10 0.424 12.24 6.12 8.08 0.860 0.237

Table 8. More metrics of efficiency for Scenario I. We report the average accuracy calculated on 12 benchmarks and the per-token decoding
time cost. Our method achieves good decoding time cost, as well as prefilling time cost.

in the main paper. As shown in Table 10, FlashAttention2
has slightly lower TFLOPs than the vanilla model. This
is probably because FlashAttention2 dose not require the
4D attention masks to enable casual attentions. Although
FlashAttention2 reduces time costs in both prefilling and
decoding stages compared to the vanilla model, our method

is faster without significant performance drops. Moreover,
our method can be further enhanced with FlashAttention2 in
the decoding stage. Besides, FlashAttention2 can only im-
prove the efficiency for Scenario I where models are accel-
erated without performance drops. In contrast, our method
works for both Scenario I and Scenario II. We believe Sce-



Base MLLM Average Memory Prefilling Decoding
+ Method accuracyl  cost] TFLOPs| TMACs]|  # Params (B) time cost] time cost|

LLaVA-1.5-7B 48.97 1.000 9.18 4.59 6.76 0.625 0.181

+ FastV 43.14 0.180 2.74 1.37 6.76 0.227 0.098

+ P-Sigmoid (Ours) |  46.52 0.171 2.66 1.33 6.76 0.223 0.095

InternVL2-1B 59.85 1.000 4.62 2.31 0.94 0.384 0.123

+ FastV 43.16 0.198 3.43 1.71 0.94 0.308 0.108

+ P-Sigmoid (Ours) | 47.83 0.188 3.38 1.69 0.94 0.304 0.106

InternVL2-2B 61.94 1.000 8.10 4.05 2.21 0.598 0.172

+ FastV 47.66 0.198 4.26 2.13 221 0.353 0.112

+ P-Sigmoid (Ours) | 51.54 0.188 4.16 2.08 2.21 0.350 0.109

InternVL2-4B 68.16 1.000 13.97 6.98 4.15 0.969 0.256

+ FastV 54.83 0.180 5.48 2.74 4.15 0.441 0.143

+ P-Sigmoid (Ours) |  61.19 0.171 5.38 2.69 4.15 0.436 0.141

InternVL2-8B 70.83 1.000 24.10 12.05 8.08 1.518 0.388

+ FastV 55.17 0.180 7.71 3.86 8.08 0.590 0.182

+ P-Sigmoid (Ours) |  62.86 0.171 7.46 3.73 8.08 0.577 0.178

Table 9. More metrics of efficiency for Scenario II. We set R=87.5% for Fast V.

Base MLLM Average Prefillin Decodin,
+ Method accurafyT TFLOPs| TMACs| # Params (B) time costi time costgi
LLaVA-1.5-7B 48.43 9.18 4.59 6.76 0.135 0.077
+ FlashAttention2 48.41 8.96 4.48 6.76 0.128 0.073
+ G-Search (Ours) 48.25 3.95 1.98 6.76 0.109 0.068
InternVL2-8B 70.39 24.10 12.05 8.08 0.278 0.101
+ FlashAttention2 70.34 23.67 11.84 8.08 0.212 0.085
+ G-Search (Ours) 70.07 12.24 6.12 8.08 0.163 0.074

Table 10. Comparison to FlashAttention2. Bflot16 is adopted to enable FlashAttention2. Our method achieves better efficiency with
negligible performance drops. Furthermore, our method is able to trade off the efficiency and the performance for Scenario II.

nario II, where the performance is improved with given bud-
gets, is in demand and important for edge applications, but
it is ignored by current studies.

Evaluation with long contexts: FlashAttention can signif-
icantly accelerate MLLMSs for long context scenarios. To
leverage it, we slightly modify the implementation of our
G-Search. We additionally calculate the attention scores
between vision tokens and instruction tokens instead of get-
ting the scores from attention layers. Since the instruction is
short, the extra overhead is light. With the modified imple-
mentation, G-Search can be applied together with FlashAt-
tention. Table 11 compares LongVA [51] our method and
FlashAttention on VideoMME with around 32K tokens. G-
Search further improves the efficiency upon FlashAttention
by 2x.

8. Evaluation on video benchmarks

It is a common practice that MLLMs handle a video by
sampling several images from the video and encoding each

image into vision tokens. Such an approach leads to a
large amount of redundant vision tokens, and should benefit
from vision token reduction methods. In this section, we
demonstrate our reduction method also accelerates MLLMs
in video understanding. We evaluate our method on top of
InternVL2-8B, which is trained with videos, on two pop-
ular video understanding benchmarks, i.e., MVBench [19]
and Video-MME [12]. The InternVL2 model will sample
8 images from the input video and encode them into more
than two thousands of vision tokens. We leverage the re-
duction strategy from our G-Search, which finds the opti-
mal keeping rates on image understanding data, to speed up
the InternVL2 model.

Table 12 compares our method to FastV variants config-
ured as R=50% and R=87.5%. We have the following in-
teresting findings. First, we can reduce more computational
costs for video understanding tasks than image understand-
ing tasks. For example, P-Sigmoid requires less TFLOPs
and runs faster than G-search. But they gain similar per-
formance on the two video benchmarks. This is plausible



LongVA

Accuracy Prefilling time] Decoding time| Max memory.

+ FlashAttn 52.8 5.44 s 1.32s 102 GB
+ FlashAttn & Ours 52.1 235s 0.61s 63 GB
Table 11. LongVA with around 32K tokens on VideoMME
Base MLLM Reduction Effectiveness Efficiency
+ Method Strategy [ MVBenchT Video-MMET | Memory cost] TFLOPs] Time cost]
InternVL2-8B None 64.67 52.41 1.0 38.71 2.522
+ FastV (R=50%) Handcrafted 64.72 52.48 0.531 2291 1.512
+ G-Search (Ours) Automatic 64.65 52.52 0.424 19.13 1.340
A - -0.07 +0.04 -0.107 -3.78 -0.172
+ FastV (R=87.5%) Handcrafted 63.88 51.63 0.180 11.74 0.891
+ P-Sigmoid (Ours)  Automatic 64.70 52.48 0.171 11.34 0.886
A - +0.82 +0.85 -0.009 -0.40 -0.005

Table 12. Evaluation two video benchmarks. Reduction methods are applied on top of InternVL2-8B that is trained with video data.
G-Search achieves better efficiency compared to FastV with the default setting. P-Sigmod uses a similar budget as FastV (R=87.5%) and

gains better performance.

because there more redundant vision tokens in videos than
in images. Thus, more tokens can be removed without in-
formation loss. Second, for Scenario II, the performance
gap between P-Sigmoid and FastV in video understanding
is smaller than that in image understanding. Probably, this is
caused by the fact that videos gain lots of redundant vision
tokens. Non-optimal reduction strategy is likely to remove
tokens without much information loss. Such results moti-
vate a promising future work that explores how to remove
highly redundant vision tokens.

9. More analysis & illustration
9.1. How to set budgets for P-Sigmoid

As mentioned in the main paper, to set the budgets of P-
Sigmoid as the budgets of FastV [5], we first set the number
of vision tokens in P-Sigmoid the same as that in FastV.
Then, we slightly lower down the number of vision tokens
to match the TFLOPs of P-Sigmoid and FastV. This is be-
cause the number of vision tokens is not exactly propor-
tional to TFLOPs, as discussed below.

Per the discussion in FastV [5], the total FLOPs of i-th
layer of a LLM is C; = 4n;d? + 2n2d + 2n;dm where n;
is the number of tokens at this layer, d is the hidden state
size of the multi-head attention, and m is the intermediate
size of the feed-forward network. Thus, for a LLM with L

layers, the total FLOPs C' can be written as,

L
C=> (4n;id® + 2n}d + 2n;dm) (4)
L
= (4d” + 2dm)N + ) " n? (5)
where N = ). n; refers to the number of total tokens

from all layers. The term Zf n? reaches the minimal when
Vn; = N/L, which is the case of FastV. We provide a
brief proof for the above statement below. According to
Cauchy—Schwarz inequality,

(Z wiyi)? < (Z x?)(z y?). (6)

When the inequality becomes an equality if and only if
Vi, Vi, xi/y; = x;/y;. Wesety; =1, z, =n;andn = L,
and we have

L L
L(Z n?) > (Z ng)? = N2. (7)

When Vn; = N/L, (YF n2) reaches the minimal N2/L.

Since FastV reaches the minimal FLOPs for a given N,
any other reduction strategies always have more FLOPs for
the same N. Therefore, to match the FLOPs of FastV and
our method, we have to reduce the number of total tokens
N for our method.

9.2. Values of  for different MLLMs

Fig. 7 illustrates values of k£ from P-Sigmoid for Table 9.
As shown, on top of LLaVA-1.5-7B and InternVL-8B, our
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Figure 7. Values of k for different MLLMs from P-Sigmoid.

1K 2K 4K 8K 16K 32K
InternVL-8B  70.7 58.1 48.6 46.0 37.7 242
+ Ours 709 583 49.0 464 394 29.2

Table 13. G-Search with various context lengths on MM-NIAH.

method has the same memory cost but outputs different k.
On top of InternVL-1B and InternVL-2B, P-Sigmoid again
outputs different k£ with the same memory cost. Those re-
sults indicate that different MLLMs should have different
parameters and reduction strategies, which further explains
why P-Sigmoid with automatic search can outperform other
methods regardless of MLLMs.

9.3. Correlations between layers

In Sec. | of the main paper, we demonstrate our main find-
ing by analyzing LLaVA-1.5-7B. As shown in Fig. 8a, we
sort the vision tokens of each layer of LLaVA-1.5-7B based
on their attention scores to instruction tokens and calculate
the Kendall’s Tau correlation coefficient [17] between the
current layer and the next layer. We regard the relative im-
portance of one vision token as its ranking. Then, the find-
ing is that the relative importance of each vision token re-
mains similar in each layer of MLLMs after the first layer.
In this section, we provide the same visualization by analyz-
ing InternVL2-1B/2B/4B/8B models. As shown in Fig. 8b,
we get similar observations as Fig. 8a. As a result, our find-
ing is a general case for different MLLMs.

In addition to correlation between consecutive layers,
Fig. 9 visualizes the correlation coefficients between ev-
ery two layers of the LLMs within different MLLMs. As
shown, for all MLLMs, the coefficients are high in almost
all regions except the first row and the first column. The
result further enhance our finding about the relative impor-
tance of vision tokens.

9.4. Evaluation on long context benchmarks

We evaluated our G-Search on top of InternVL2-8B on
MM-NIAH [40] in Table 13. As shown, with our method,
the performance remains the same for short contexts (<
8K), and improves for longer contexts. This is probably
because our method removes irrelevant tokens and focuses
on informative tokens. It is more likely to find the “needle”
in a haystack with a few relevant tokens.

InternVL2-8B | Prefill (s)] | Decode (s)| Max mem.|
w/ G-Search? | No Yes | No Yes No Yes

4K tokens 0.60 0.36 | 0.20 0.15 | 56GB 50GB
8K tokens 1.17 0.62 | 033 0.21 | 62GB 52GB
16K tokens 265 113|068 032 |77GB 56 GB

Table 14. Efficiency with token lengths. FlashAttention is used.

9.5. Efficiency with various token length

We analyze the efficiency of G-Search deployment on top
of InternVL2-8B. Table 14 shows the improvement of G-
Search with various token lengths. As shown, the proposed
G-Search can decrease the time cost, as well as memory
cost, for both prefilling and decoding with various context
length, which clearly demonstrates its effectiveness in real-
world deployment.

9.6. Limitations and future work

We discuss several limitations of our method and provide
potential solutions. First, a general issue of prompt-aware
vision token reduction methods is that they require attention
scores in the prefilling stage. Thus, they cannot use existing
I/O aware approaches like FlashAttention2 for further ac-
celeration. Note that we can still use those approaches with
our method in the training and the decoding stage. Although
Sec. 7.2 shows that our method can outperform FlashAtten-
tion2, we will explore an I/O aware version of our method
in the future. For example, we may get the calculated dis-
tances of queries and keys from static random-access mem-
ory (SRAM) to replace attention scores in our method. Sec-
ond, our method finds optimal reduction strategies on image
understanding data, which are not optimal for video under-
standing. This is probably because videos are more redun-
dant than images in terms of vision tokens. A possible so-
lution is to search reduction strategies on video data. Third,
our method decides which token to remove only in the pre-
filling stage. It is highly possible that as the generation of
the response, some vision tokens are no longer essential and
can be removed. A potential solution is to adjust the reduc-
tion strategy based on the sequential output tokens, as well
as the instruction tokens.
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Figure 8. (a): Kendall’s Tau correlation coefficient between the current layer and the next layer of LLaVA-1.5-7B (b): Kendall’s Tau
correlation coefficients for InternVL2 family. Our finding on LLaVA-1.5-7B hold on InternVL2 family.
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Figure 9. Kendall’s Tau correlation coefficient between every two layers of various MLLM:s.
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