
Analyzing the Synthetic-to-Real Domain Gap in 3D Hand Pose Estimation

Supplementary Material

In the following supplementary material, we present
more details about our work. Sec. A provides the am-
plitude spectrum augmentation algorithm used during the
model training stage to augment synthetic images. Sec. B
provides the fitting algorithm for obtaining NIMBLE hand
meshes in different poses. Sec. C provides the rendering
details of the hand image synthesis pipeline. Sec. D illus-
trates how we obtain the finger-level occlusion annotations
for object occlusion analysis. Sec. E provides the imple-
mentation details of the VAE object occlusion prior. Sec. F
shows the difference between NIMBLE and MANO hand
templates. Sec. G compares the influence of hand model
templates used for data synthesis. Sec. H presents the re-
sults of training the model with a combination of synthetic
and real data. Sec. I shows the component influence before
Procrustes Alignment. Sec. J shows the comparison of syn-
thetic data generated by generative models. Sec. K shows
more visualization of our synthetic dataset.

A. Amplitude Spectrum Augmentation
We apply amplitude spectrum augmentation [1] during the
model training stage to address the frequency domain gap.
The amplitude spectrum augmentation algorithm is shown
in Alg. 1. We set the hyper-parameters α to 3, β to 0.25,
and k to 2 during the training.

Algorithm 1 Amplitude spectrum augmentation

1: Input: x ∈ RH×W ; ▷ Input synthetic image
2: Augmentation parameters: α, k, β
3: F(x)← FFT(x) ; ▷ Fast Fourier Transform
4: A(x),P(x)← Abs(F(x)),Ang(F(x))
5: A(x)← FFTShift(A(x)) ; ▷ Zero-center amplitude
6: for p ∈ [−H/2, H/2] do
7: for q ∈ [−W/2, W/2] do

8: σ[p, q]←
(
2α

√
p2+q2

H2+W 2

)k

+ β

9: end for
10: end for
11: λ ∼ N (1, σ2) ; ▷ Calculate perturbations
12: Ã(x)← λ⊙A(x) ; ▷ Perturb amplitude spectrum
13: Ã(x)← FFTShift(Ã(x))
14: x̃← Inverse-FFT(Ã(x),P(x)) ; ▷ Augmented image

B. Fitting Algorithm
To prepare hand meshes for rendering, we develop algo-
rithms to fit NIMBLE [4] meshes to MANO [7] meshes.

Thumb

Palm

Index

Middle

Ring

Little

Input Image Rendered Hand Hand Mask Masked Rendered Hand

Rendered Vertices

Non-occluded

Occluded

Figure A. Finger-level occlusion annotation preparation.

Since we find that optimizing all parameters directly leads
to poor fitting results, we divide the fitting process into two
stages. In the coarse stage, we optimize the rotation param-
eter r ∈ R3 and translation parameter t ∈ R3. The training
loss consists of a 3D joint loss and a vertex loss:

L = Ljoint + λvertLvert,

where λvert is set to 0.1. We use a learning rate of 1e0 for
both r and t. The epoch for the coarse stage is 2, with 3,000
iterations per epoch.

In the fine stage, we optimize pose θ ∈ R30, shape
β ∈ R20, rotation r and translation t parameters together.
The training loss consists of a vertex loss and regularization
losses for pose and shape parameters:

L = Lvert + λposeLpose + λshapeLshape,

where λpose and λshape are set to 50. We use a learning
rate of 1e-3 for both θ and β, and a learning rate of 1e-2
for both r and t. The epoch for the fine stage is 4, with
3,000 iterations per epoch. All learning rates are divided by
10 every 1,000 iterations. Additionally, learning rates are
reset to their initial value at the beginning of each epoch to
prevent convergence to local minima.

C. Rendering Details
In this section, we detail our camera settings for rendering.
To ensure our analysis is not affected by other influencing
factors, our camera viewpoints are consistent with the target
real dataset we compared. We calculate the camera focal
length f i for rendering each synthetic image i by:

f i = f i
x ∗

Wsensor

Wimage
,

where f i
x is derived from the provided camera intrinsic ma-

trix Ki, Wsensor represents the sensor width, which is 36
mm, and Wimage represents the width of the rendered im-
age in pixel, which can be 224 or 256. Multi-view settings
can also be implemented using our rendering code.



Encoder
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU

Linear(512)

Table A. VAE encoder.

Decoder
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU

Linear(512)

Table B. VAE decoder.

D. Occlusion Level Division
We introduce how we collect the finger-level occlusion an-
notations using [8]. As shown in Fig. A, we first allocate
faces and vertices of five fingers and the palm with different
colors and then render the hand and vertices into the input
image. Since HO3D-v2 [2] provides the hand mask for each
image, we apply this mask to remove the rendered hand
parts occluded by the object. With the masked rendered
hand and rendered vertices, we can compare each vertex
color against the corresponding finger color to calculate the
number of occluded vertices. Here, we set the threshold of
occluded vertices to 40 to determine whether the finger can
be considered occluded. With these occlusion annotations,
we can divide the validation set into different occlusion lev-
els and perform cross-dataset validation.

E. VAE Architecture
The architecture of VAE object occlusion prior with an en-
coder and a decoder consists of a series of (Linear, ReLU)
layers (see Tab. A and Tab. B). The dimension of latent vari-
able z is set to 64. The batch size is 128 and the learning
rate is 1e-4. The total epoch for training the VAE object oc-
clusion prior is 160. λ is set to 0.01. In the training stage,
a Kullback-Leibler divergence loss and a 3D joint loss are
used to train the object occlusion prior and the random mask
is applied to the input 3D pose. In the refinement stage,
we apply the visibility mask to the predicted 3D pose and
use the object occlusion prior to reconstruct those occluded
joints. The visibility masks are obtained through a render-
and-compare method similar to the finger-level occlusion
annotations [8].

During the refinement stage, we use the pre-trained VAE
prior to refine the predicted joints. First, we mask the pre-
dicted joints not visible in the image and retain only the
visible joints as inputs. Then we use the VAE prior to refine
and reconstruct a reasonable 3D hand pose.

F. Hand Skeleton Topology Difference
The hand skeleton topology difference between NIMBLE
and MANO is shown in Fig. B. Different hand skeleton
topologies can have different joint rig definitions and this

difference can introduce bias to synthetic-to-real adaptation.

Figure B. Hand skeleton topology difference between NIMBLE
template and MANO template. The green dot denotes the NIM-
BLE joints and the red dot denotes the MANO joints.

G. NIMBLE vs. MANO
We render 10k synthetic images in NIMBLE and MANO
models respectively. We keep other influencing factors
consistent, such as poses and background diversity. The
MANO texture maps are collected from RenderIH [3]. As
shown in Tab. C, using NIMBLE achieves better perfor-
mance than MANO across all metrics. This suggests that
leveraging a finer hand mesh template for image synthesis
is beneficial for bridging the synthetic-to-real gap.

Table C. Comparison of S2HAND trained with 10k synthetic im-
ages in MANO and NIMBLE template and tested on FreiHAND

.
Template PA-MPJPE ↓ PA-MPVPE ↓ MPJPE ↓ MPVPE ↓
MANO 1.29 1.31 3.79 3.95
NIMBLE 1.24 1.26 2.95 3.06

H. Synthetic-to-Real Adaptation
We explore the advantages of pre-training on our total syn-
thetic data when targeting FreiHAND and Dex-YCB. As
shown in Fig. C, by leveraging our synthetic data for pre-
training, the model achieves good performance even when
fine-tuned with only a small fraction of real data.

Furthermore, in the in-the-wild scenario, synthetic data
is useful as well. As shown in Tab. D, complementing real
datasets with our total synthetic data achieves better perfor-
mance on MOW. A qualitative comparison is presented in
Fig. D.

I. Component Influence before Procrustes
Alignment

In this section, we show how each component influences
the final predictions in metrics before Procrustes Alignment
(MPJPE). As shown in Tab. E, adding different components



5 10 20 40 100
Fraction of real data (%)

0.9

1.0

1.1

1.2

1.3

1.4

PA
-M

PJ
PE

 (c
m

)

FreiHAND

Real
Syn2Real

5 10 20 40 100
Fraction of real data (%)

0.85

0.90

0.95

1.00

1.05

PA
-M

PJ
PE

 (c
m

)

Dex-YCB

Real
Syn2Real

Figure C. Comparison of training with real data only and pre-
training with total synthetic data followed by fine-tuning on real
data (Syn2Real).

Table D. Cross-dataset evaluation of S2HAND on in-the-wild
dataset MOW.

Train sets PA-MPJPE ↓ Train sets PA-MPJPE ↓
FreiHAND 1.47 Dex-YCB 1.24
+ SynFrei 1.38 + SynDex 1.18
+ Total Syn Data 1.19 + Total Syn Data 1.15

Input GT w/ FreiHAND w/ FreiHAND + SynFrei w/ FreiHAND + Total Syn

Figure D. Qualitative comparison on MOW.

has greater impacts on MPJPE than PA-MPJPE. For exam-
ple, the improvement in MPJPE is greater than PA-MPJPE
(12% vs. 5%) for the arm. This confirms arm is important
to locate the wrist and global rotation. Moreover, amplitude
spectrum augmentation is crucial to reduce the synthetic-
to-real gap. Removing it during training leads to a 22%
performance decline in MPJPE.

Table E. Before vs. after Procrustes Alignment on FreiHAND test
set across different factors. ✓✗ refers to assigning RGB values to
the arm and object mask positions.

Arm Amp Aug Object PA-MPJPE ↓ MPJPE ↓
✓ ✓ ✓ 1.02 1.99

✓ ✓ 1.07 -0.05 (-5%) 2.22 -0.23 (-12%)
✓ ✓ 1.11 -0.09 (-9%) 2.42 -0.43 (-22%)
✓ ✓ 1.07 -0.05 (-5%) 2.13 -0.14 (-7%)
✓✗ ✓ ✓✗ 1.04 -0.02 (-2%) 2.07 -0.08 (-4%)

Hand Mesh Image

“The person is holding his cell phone in front of him.”

ControlNet AttentionHand

“The person is holding the dog's collar with both hands.”

Figure E. Synthetic hand data generated by text-to-image genera-
tive models with the hand mesh image control and text prompt.

J. Comparison with Data from Generative
Models

We run the official code of ControlNet [9] and Attention-
Hand [6] to generate synthetic hand data given mesh images
and text prompts. Since the pre-trained checkpoint is not
open-sourced by AttentionHand currently, we train it from
scratch. We also train the ControlNet given hand mesh im-
ages and text prompts as conditions. MSCOCO [5] is used
as the training set following AttentionHand. As shown in
Fig. E, although the generated hand images have realistic
backgrounds, the hands do not align well to the given mesh
prompts. While generative models have significant poten-
tial for data synthesis, further research is needed to explore
how to produce large-scale, plausible, and reliable synthetic
data effectively.

K. Additional Visualizations

Fig. F and Fig. G show some examples of synthetic hand
images and synthetic hand images with arms and interacting
objects.



Figure F. Synthetic hand image samples in our dataset.

Figure G. Synthetic hand images with arms or interacting objects.

References
[1] Prithvijit Chattopadhyay, Kartik Sarangmath, Vivek Vijayku-

mar, and Judy Hoffman. Pasta: Proportional amplitude spec-
trum training augmentation for syn-to-real domain generaliza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 19288–19300, 2023. 1

[2] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. Honnotate: A method for 3d annotation of hand
and object poses. In CVPR, 2020. 2

[3] Lijun Li, Linrui Tian, Xindi Zhang, Qi Wang, Bang Zhang,
Liefeng Bo, Mengyuan Liu, and Chen Chen. Renderih: A
large-scale synthetic dataset for 3d interacting hand pose esti-
mation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 20395–20405, 2023. 2

[4] Yuwei Li, Longwen Zhang, Zesong Qiu, Yingwenqi Jiang,
Nianyi Li, Yuexin Ma, Yuyao Zhang, Lan Xu, and Jingyi
Yu. Nimble: a non-rigid hand model with bones and muscles.
ACM Transactions on Graphics (TOG), 41(4):1–16, 2022. 1

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Com-
puter vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part v 13,
pages 740–755. Springer, 2014. 3

[6] Junho Park, Kyeongbo Kong, and Suk-Ju Kang. Attention-
hand: Text-driven controllable hand image generation for 3d
hand reconstruction in the wild. In European Conference on
Computer Vision, pages 329–345. Springer, 2024. 3

[7] Javier Romero, Dimitrios Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. arXiv preprint arXiv:2201.02610, 2022. 1

[8] Hao Xu, Tianyu Wang, Xiao Tang, and Chi-Wing Fu.
H2onet: Hand-occlusion-and-orientation-aware network for
real-time 3d hand mesh reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17048–17058, 2023. 2



[9] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 3836–3847, 2023. 3


