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7. Differences among Four Proposed Metrics
‘Merge error’ refers to our observation that some small ob-
jects are directly merged into one larger object. ‘Displace-
ment’ refers to the phenomenon where the boundaries of
an object shift relative to one or more adjacent objects due
to unclear semantic features at these boundaries. For ‘Dis-
placement’, most of mask points must be correctly pre-
dicted to calculate boundary blurriness. That’s why we in-
troduced the θ parameter. The essential difference between
‘false response’ and ‘region classification error’ is that the
former involves a complete GT mask with many small er-
roneous regions being predicted, whereas the latter involves
the complete GT mask being classified as another object of
similar shape.

7.1. Real-Time Boundary Pseudo-Label Calcula-
tion

We provide the pseudo-code of our PBPLC as below:

Algorithm 1 Proposed Parallel Boundary Pseudo-Label
Calculation (PBPLC)
Input: Point cloud coordinates C ∈ RN×3

Point cloud semantic labels S ∈ RN×1

Parameter: Radius threshold r
Number of points in the Point cloud: N
Euclidean distance between two points: ED(·)
Output: Binary boundary pseudo-label Ê ∈ {0, 1}N
Procedure:

1: Initialize B as an all-zero queue
2: Put the Ci, Si on ith CUDA parallel threads.
3: Operation on N threads simultaneously:
4: for j < N do
5: if Si == Sj or r < ED(Ci, Cj) then
6: continue
7: else
8: Êi = 1
9: end if

10: end for
11: return Ê

8. Additional Comparison to SOTAs
In the manuscript, we provide results of our method on the
general datasets ScanNet200 and ScanNetv2. Here, we re-
port the results on another common dataset, S3DIS [1], as
well. The S3DIS dataset comprises 271 scenes across 6 ar-
eas, with 13 semantic classes labeled in these scenes. We re-

port the results specifically for area 5 for semantic segmen-
tation evaluation, while the other areas are used for train-
ing. All results are from the publicly available data of the
method, and ”-” indicates that the method does not provide
the corresponding data.

To the best of our knowledge, our proposed method is the
first octree-based method validated on the S3DIS dataset
for 3D semantic segmentation. As reported in Tab. 8,
Our method achieves state-of-the-art performance on this
dataset.

Methods Venue Input mIoU↑
SparseUNet [12] CVPR’18 voxel -
MinkUNet [6] CVPR’19 voxel 65.4
LargeKernel3D [4] CVPR’23 voxel -
OA-CNN [39] CVPR’24 voxel 71.1
PTv1 [69] ICCV’21 point 70.4
Stratified-Tr [24] CVPR’22 point 72.0
FastPoint-Tr [37] CVPR’22 point 70.4
PTv2 [56] NeurIPS’22 point 71.6
PTv3 [57] CVPR’24 point 73.4
SPG [15] ECCV’24 point 73.3
O-CNN [49] TOG’17 octree -
OctFormer [48] TOG’23 octree -
Ours - octree 73.7

Table 8. Evaluation on S3DIS Area 5 with Traditional Metrics.

8.1. Additional Comparison with Proposed Metrics

Figure 6. Additional Comparison to PTv3 with the Proposed Met-
ric

In Section 5.2.2, We provide comparison results of Err
with respect to changes in boundary distance r. Since DErrθ
is also related to the mask threshold θ, we provide compari-
son results of DErrθ with respect to changes in θ in this sec-
tion. As depicted in Fig. 6, our method clearly outperforms
state-of-the-art approaches, demonstrating its superior abil-
ity to mitigate displacement error.



9. Implementation Detail.

9.1. Test Time Augmentation (TTA)

In response to the challenges of model robustness and gen-
eralization, most SOTA methods [36, 48, 57] incorporate
test-time augmentation approaches during inference to en-
hance semantic segmentation. In our work, we exploit three
existing test-time augmentation approaches: rotation, su-
perpoint pooling, and multiple checkpoint ensemble. For
rotation, we input the initial view with a yaw angle offset of
120 degrees for each pass and perform score maximization
across the three results. In addition, we directly apply the
superpoint pooling method borrowed from [36, 59, 70] to
perform mean pooling operations on points within the same
superpoint. Finally, we apply the multiple checkpoint en-
semble method from our baseline model, OctFormer [48],
to further refine the semantic segmentation results.

Due to rotation, superpoint pooling has become a con-
sensus and is widely adopted by most state-of-the-art meth-
ods [25, 36, 48, 57, 59, 70]. Therefore, in our manuscript,
we follow the approach of OctFormer [48] and focus on
ablation studies of checkpoint ensemble. Since the S3DIS
dataset does not include superpoints, we omit this TTA op-
eration for its validation.

9.2. Training Data Augmentations

Our data augmentation strategy during training closely
aligns with that of PTv3. Detailed comparisons are pro-
vided in Tab. 9 and Tab. 10. For clearer visual reference, dif-
ferences are highlighted in green. Specifically, our method
entirely dispenses with the need for a voxel network, hence
we remove the grid sampling operation. Furthermore, given
that our method is octree-based, we reduce the number of
sphere-crop points to enhance training speed and reduce
memory consumption.

Augmentations Parameters

random dropout dropout ratio: 0.2, p: 0.2
random rotate axis: z, angle: [-1, 1], p: 0.5

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5

random scale scale: [0.9, 1.1]
random flip p: 0.5
random jitter sigma: 0.005, clip: 0.02
elastic distort params: [[0.2, 0.4], [0.8, 1.6]]
auto contrast p: 0.2
color jitter std: 0.05; p: 0.95
sphere crop ratio: 1.0, max points: 102400
normalize color p: 1.0
scene mixup num: 2

Table 9. Training Data Augmentations in Proposed Method.

Augmentations Parameters

random dropout dropout ratio: 0.2, p: 0.2
random rotate axis: z, angle: [-1, 1], p: 0.5

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5

random scale scale: [0.9, 1.1]
random flip p: 0.5
random jitter sigma: 0.005, clip: 0.02
elastic distort params: [[0.2, 0.4], [0.8, 1.6]]
auto contrast p: 0.2
color jitter std: 0.05; p: 0.95
grid sampling grid size:0.02
sphere crop ratio: 1.0, max points: 128000
normalize color p: 1.0
scene mixup num: 2

Table 10. Training Data Augmentations in PTv3 [57].

10. Additional Visualizations
In this section, we provide the comparative segmentation
results in Fig. 7, the snapshot of the ScanNet200 online
leaderboard in Fig. 9, and the visual representation of oc-
tree construction in Fig. 8.
Comparative Segmentation Results. We provide addi-
tional visual comparisons, as illustrated in Fig. 7. The
comparative results from the first and second rows demon-
strate that our method effectively mitigates Displacement
errors. Furthermore, the comparative results in the first row
demonstrate that our method effectively overcomes False
Response errors.
Octree Construction. As shown in Fig. 8, we construct an
octree with a depth of 9 from the input point cloud and visu-
alize the octree structure at each depth along with the cor-
responding point cloud. Adjacent green cubes across dif-
ferent depths illustrate a parent-child relationship, with the
cube at the lower depth acting as the parent node to the cor-
responding cube at the higher depth. In addition, the octree
structure captures both global information (at lower depths)
and local details (at higher depths), which is different from
the voxelization methods.
Snapshot of the ScanNet200 Online Leaderboard. Con-
sidering that the ScanNet200 online leaderboard may up-
date in real-time, we have included a screenshot from Octo-
ber 22, 2024. As illustrated in Fig. 9, our BFANet ranks 2nd
on the ScanNet200 official benchmark challenge, present-
ing the highest mIoU so far if excluding the 1st place winner
that, however, involves large-scale training with auxiliary
data.



Input Semantic Label Baseline Pred. Ours Pred. Boundary Label Boundary Pred.

Figure 7. Qualitative Comparison. Pred. stands for Prediction. The red rectangular boxes indicate areas of particular interest.
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Figure 8. Visualization of Octree Construction



Figure 9. ScanNet200 Benchmark Challenge. Recorded on October 22, 2024.
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