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A. Experiment Details
Architecture. We utilize CLIP-ViT-L-14 [29] as the vision en-
coder, with a default resolution of 336 ! 336, and Meta-Llama-
3-8B [1] as the language model. The low-resolution (LR) branch
employs a 2-layer MLP as the adapter, while the high-resolution
(HR) branch compresses visual tokens using a shared Perceiver re-
sampler layer [2]. In the HR branch, each high-resolution image
is divided into four sub-patches. The resampler processes the vi-
sual tokens from these sub-images, compressing them from 2,880
down to 128 tokens via cross-attention with query vectors. These
128 tokens are then concatenated with the 576 tokens from the
low-resolution overview image and fed into the LLM.

Pretrain Datasets. We use the same dataset for LLaVA-1.5
experiments. Specifically, stage 1 uses CC595k [31] and stage 2
uses DataMix 665k [10, 11, 13, 14, 20, 23–25, 30, 33] proposed in
Liu et al. [19].

Hyperparameters. In this work, we adopt the same set of hy-
perparameters as LLaVA-1.5 [19]. We show the training hyperpa-
rameters for LLaVA-1.5 experiments in Table 5. All experiments
are conducted using a maximum of 8 Nvidia H800 GPUs. We set
the value of µe = 7.32 and µh = 4.38, respectively, with a spar-
sification threshold ω = 0.5 applied to selectively filter out lower-
relevance tokens. Additionally, the temperature parameter, initial-
ized at zero, is set as learnable to dynamically adjust throughout
training.

Robustness of EECA. We evaluate the robustness of EECA
across different hyperparameter settings. The model maintains
comparable accuracy within specific ranges of key parameters,
such as the balancing coefficient µe, sparsification threshold ω, and
high-resolution visual tokens NvH (See Figure 7), demonstrating
stable performance despite small variations.

Figure 7. The robustness of the different hyperparameters.

B. Datasets Construction for MGLD
This section expands Section 3 with additional details about our
data preprocessing steps.

Hyperparameter LLaVA-1.5 EECA
Stage 1 Stage 2 Stage 3

batch size 256 128 128
lr 2e-3 2e-5 2e-5
lr schedule decay cosine cosine cosine
lr warmup ratio 0.03 0.03 0.03
weight decay 0 0 0
epoch 1 1 1→

optimizer AdamW [21]
DeepSpeed stage 2 2 2

Table 5. Hyperparameters for EECA training on LLaVA-1.5. By
default, EECA is trained for 1 epoch, denoted by →. Unless other-
wise stated, the results presented in Table 4 are based on 2 epochs
of training.

B.1. Details of google landmarks dataset v2
Overview. The Google Landmarks Dataset v2 (GLDv2) [41]
is the largest benchmark for fine-grained instance recognition and
image retrieval, comprising over 5 million images with 200,000
distinct instance labels. It sourced from Wikimedia Commons,
and is characterized by real-world challenges such as imbalanced
class distribution and high intra-class variability.

Data usage in this work. In this study, we
leverage the GLDv2 dataset to construct a fine-
tuning dataset, utilizing all data from the training set
(train.csv, train label to category.csv, and
train label to hierarchical.csv). This dataset
comprises 4.1 million images spanning 203,000 landmarks.
• train.csv: Contains fields id, url, and landmark id.

Here, id is a 16-character string, url is a string representing
the image’s URL, and landmark id is an integer identifier for
the landmark.

• train label to category.csv: Includes
landmark id and category fields. landmark id
is an integer, while category is a Wikimedia URL linking to
the class definition of the landmark.

• train label to hierarchical.csv: Contains
fields landmark id, category, supercategory,
hierarchical label, and natural or human made.
Supercategory refers to the type of landmark
(e.g., natural or human-made), mined from Wikimedia.
Hierarchical label corresponds to the landmark’s
hierarchical classification, and natural or human made
indicates whether the landmark is naturally occurring or
man-made.

The structure of the GLDv2 training dataset is depicted in Figure 8.
Each hierarchical label encompasses multiple categories,
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Figure 8. The structure of the GLDv2 train set
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Figure 9. Frequency of the counts of images per category

and each category consists of a varying number of images, reflect-
ing the diverse and hierarchical nature of the dataset. The cate-
gory distribution in GLDv2 training dataset is highly imbalanced,
as illustrated in Figure 9. Approximately 57% of the categories
contain at most 10 images, and 38% have 5 or fewer images. This
makes the dataset diverse, covering a wide range of landmarks,
from globally renowned sites to more obscure, local landmarks.

B.2. Image selection methodology
In the first stage ( Figure 2), we select representative images from
the GLDv2 dataset. Since each landmark name corresponds to
multiple images, typically sourced from Wikipedia entries related
to the landmark, we use the landmark’s simple name (e.g. “Eiffel
Tower”) as the sole reference. Using CLIP-based similarity mea-
sures, we select the image that best matches this name, filtering
out low-quality or ambiguous photos and ensuring a high-quality
visual representation aligned with the landmark’s identity. From
the top three images with the highest similarity scores, we conduct
weighted sampling based on their similarity to select a unique im-
age corresponding to each landmark. Figure 10 presents a specific
example of image selection.

B.3. Prompt design for data annotation
Q-A pair. Once we have a refined set of images, we generate
Question-Answer (Q-A) pairs to facilitate landmark recognition.
The prompt used for image Q-A pair annotation is shown in Fig-
ure 12. For each selected image, we random select one question

Figure 10. Example for the image selection methodology (the Cas-
tle of Pardo de Cela). Red: The top3 images with the highest sim-
ilarity scores. Green: The final image obtained through weighted
sampling.

from the questions set and add the landmark name as a reference
to ensure the accuracy of the annotation. While answering these
questions, the model is encouraged to provide descriptive details
about the landmark, drawing on both the visual features and con-
textual information. This approach aims to broaden the model’s
understanding of each landmark’s visual and contextual unique-
ness, laying a foundation for aligning with VE’s cognitive space.

Multi-granularity data annotation. Following the Q-A
pair annotation for each image, we generate multi-granularity data
using the multi-granularity data generation prompt shown in Fig-
ure 11. In the original dataset, some hierarchical labels were al-
ready provided. To enhance accuracy, we employed GPT-4o to
refine and expand the annotations, using the original labels as a
reference. This process provides us with entities and an updated
hierarchical label.



Figure 11. Multi-Granularity data generation prompt. The description is the Q-A pair.

PROMPT_QA = '''{QUESTION} 

[Reference Location]: {LOCATION} 

[Note: The reference location may be incorrect, so you need to 

rely on your own ability to answer.]

[Your response must adhere to the following requirements]: 

1. The response must be in English; 

2. Besides identifying the location where the photo was taken, 

you should also describe the photo and share some knowledge 

related to the location; 

3. Do not mention the reference location or this note in your 

response.'''

1. Where was this photo taken?

2. Identify the location where this photo was taken.

3. What is the location shown in the image?

4. Tell me where this photo was taken.

5. Where might this photo have been taken?

6. What place is depicted in this image?

Questions 

Prompt

Figure 12. Q-A pair prompt.

B.4. MGLD overview.

We structure the data as illustrated in Figure 13. Each image is
associated with a Q-A conversation, its landmark name, entities
that capture both visual and conceptual features, and a hierarchical
label representing its general category.

From the final dataset of approximately 203k samples, we set
aside 5k samples as the test dataset.

    {
        "id": 42349,
        "image": "0/6/a/06a6f629e39d1649.jpg",
        "conversations": [
            {
                "from": "human",
                "value": "Where might this photo have been 
                taken?\n<image>"
            },
            {
                "from": "gpt",

            "value": "The Patos Island Lighthouse is a historic lighthouse located on Patos Island in the San      
Juan Islands of Washington State, USA. The lighthouse features a white two-story structure with a 
red roof and an octagonal lantern room. It was built in 1893 to aid maritime navigation in the region 
and has since become a notable landmark in the Pacific Northwest.\n\nPatos Island is part of the San 
Juan Islands, an archipelago in the Pacific Northwest known for its scenic beauty and diverse 
wildlife. The island is accessible only by boat and is a popular destination for boating, kayaking, and 
wildlife observation. The surrounding waters are  part of the Salish Sea, which is home to orcas, 
seals, and a variety of seabirds. The lighthouse itself is part of Patos Island State Park, offering 
visitors a glimpse into the maritime history of the region."

            }
        ],
        "landmark_name": "Patos Island Lighthouse",
        "entities": [
                "white lighthouse","red roof","two-story structure","octagonal lantern room",
                "island setting","maritime navigation","Pacific Northwest","San Juan Islands"
        ],
        "hierarchical_label_gpt4o": "island"
    }

Figure 13. Example of the MGLD datasets. The conversation is
the Q-A pair, and the hierarchical label gpt4o is the new hierar-
chical label annotated by GPT-4o.

C. Evaluation Detail

C.1. Prompt design

We provide GPT4o with 5 inference runs of the VLLM and the
ground-truth answer. The GPT4o is asked to evaluate the over-
all recognition of the landmark based on all 5 responses together,
and classify the level of recognition into one of the four levels:
Strongly Known, Known, Partially Known, or Unknown. The
classification criteria is clearly defined in the prompt (See Fig-
ure 14).



Recognition level 1: Strongly Known
The responses correctly identify the landmark multiple times, 
providing detailed and accurate information that matches the 
correct answer.
Recognition level 2: Known
At least one response correctly identifies the landmark and 
provides a reasonable explanation.
Recognition level 3: Weakly Unknown
The responses do not identify the correct landmark but mention 
other landmarks with relevant details, such as geographical hints, 
architectural styles, or historical references, that are associated 
with or suggest a connection to the correct landmark. However, 
responses that only mention broad categories, such as “church” 
or “park,” without referencing specific landmarks, should not be 
classified as Weakly Unknown.
Recognition level 4: Unknown
None of the responses correctly identify the landmark, and the 
information provided is either unrelated or significantly off the 
mark. If the responses only describe general features of the 
image without mentioning any landmark, or if mentioned 
landmarks are irrelevant, the recognition should be classified as 
Unknown.

You are given 5 responses generated by a Large Vision-
Language Model(LVLM) to the question "Where was this 
image taken?". Each response should be compared with the 
provided correct answer, which includes the exact name of the 
landmark.
Your task is to evaluate the overall recognition of the landmark 
based on all 5 responses together, and classify the recognition 
into one of the following four levels:

Figure 14. Evaluation prompt.

C.2. Rating criteria examples
This section provides an example (“Kinderdijk Windmills“) eval-
uated by GPT-4o, where the answer across different models is as-
sessed at four different levels—Strongly Known, Known, Partially
Known, and Unknown. Figure 15 shows the specific answers
from each model, followed by GPT-4o’s explanations for the cor-
responding evaluations.

• Explanation of strongly known : The responses correctly iden-
tify the Kinderdijk Windmills multiple times, specifically in
Responses 2 and 3, providing detailed and accurate information
that matches the correct answer. These responses include pre-
cise details about the location, historical significance, and char-
acteristics of the Kinderdijk Windmills, demonstrating a strong
recognition of the landmark.

• Explanation of known: Response 1 correctly identifies the
Kinderdijk Windmills and provides detailed and accurate in-
formation about their location, history, and significance. This re-
sponse alone is sufficient to classify the recognition as ‘Known’.
Although Responses 2 and 3 incorrectly identify the location as
Zaanse Schans, they do provide relevant details about Dutch
windmills, which are related to the correct landmark. Re-
sponses 4 and 5 describe general features of Dutch windmills
and mention regions like Kinderdijk, but do not specifically
identify the landmark. Overall, the presence of one accurate
identification with detailed information justifies the ‘Known’
classification.

• Explanation of weakly unknown: None of the responses cor-
rectly identify the ‘Kinderdijk Windmills’ specifically. How-
ever, several responses mention relevant Dutch windmills and

1. The Kinderdijk Windmills are a group of 19 traditional Dutch windmills located 
in the Alblasserwaard polder, near the town of Kinderdijk in the Netherlands. 
These windmills were originally built in the 18th century to manage water 
levels and prevent flooding in the low-lying polder. The windmills are 
characterized by their conical towers, large sails, and brick construction, and 
they stand as a testament to Dutch engineering and ingenuity in water 
management.Kinderdijk is situated in the southern part of the Netherlands, 
near the city of Rotterdam. The surrounding area is known for its picturesque 
landscapes, with a network of canals, fields, and waterways that are integral to 
the Dutch water management system. The windmills are a popular tourist 
attraction, offering insights into the historical methods used to control water 
levels in the region. Visitors can explore the windmills, learn about their 
history, and enjoy the scenic beauty of the Dutch countryside.

2. This traditional Dutch windmill features a classic black and white exterior with 
a thatched roof and large wooden blades. It stands in a picturesque rural 
setting, often surrounded by water or fields, and is a symbol of Dutch 
ingenuity in water management and energy generation.Dutch windmills are 
iconic structures found throughout the Netherlands, particularly in regions 
like Kinderdijk and Zaanse Schans. They are not only functional but also 
cultural symbols, representing the country's rich history of water control and 
agricultural productivity. The surrounding areas often feature scenic 
landscapes, with canals, fields, and other windmills.

3.  The Zaanse Schans is an open-air museum in the Netherlands, showcasing 
traditional Dutch windmills. These windmills are iconic structures with large 
wooden sails, historically used for milling grain, pumping water, or sawing 
wood. The area is characterized by its picturesque rural landscape, with 
thatched-roof cottages and scenic canals.Located in the province of North 
Holland, the Zaanse Schans is a popular tourist destination. The area is known 
for its well-preserved historical buildings and traditional Dutch crafts. Visitors 
can explore the windmills, enjoy boat tours on the canals, and experience the 
local culture and history through various museums and workshops.

Model Response (Strongly Known)

Model Response (Weakly Unknown)

Model Response (Unknown)

Figure 15. Model responses from different recognition level.
There is a significant gap in recognition ability among “Strongly
Known,” “Weakly Unknown,” and “Unknown”. The difference
between “Strongly Known” and “Known” is the number of times
the model correctly identifies the landmark.

regions associated with windmills, such as Kinderdijk and Za-
anse Schans, providing geographical hints and cultural context
related to Dutch windmills. This suggests a connection to the
correct landmark, even though it is not explicitly named.

• Explanation of unknown: None of the responses correctly
identify the ‘Kinderdijk Windmills’. The responses mention
other windmills and locations such as ‘Weerschipmolen’, ‘Za-
anse Schans’, and ‘Huis op de Hoop’, but these are not related to
the correct landmark. The information provided is either unre-
lated or significantly off the mark, as none of the responses pro-
vide any specific details or hints that connect to the Kinderdijk
Windmills.



D. Statistical Analysis for Partial Knowledge
Parts

D.1. Detail results for ablation study
We reports the results of the ablation study in terms of propor-
tions relative to the entire dataset (See Table 3). Here, in Table 6,
we provide the corresponding absolute counts for each knowledge
level (Strongly Known, Known, Weakly Unknown, Unknown).

Method Strongly Known Known Weakly Unknown Unknown

Baseline 103 114 145 2138
+ HSS-50k 187 161 145 2007
+ HR-Branch 198 149 152 2001
+ Le 212 148 163 1977
+ Lh 213 175 159 1953

Table 6. Detailed ablation study results. Absolute counts for each
level of knowledge.

D.2. Detailed results for generalizability experiment
We summarizes the results of the generalizability experiments us-
ing accuracy (See Table 4). To complement this, Table 7 presents
the absolute counts for each knowledge level (Strongly Known,
Known, Weakly Unknown, and Unknown).

Method Strongly Known Known Weakly Unknown Unknown

Baseline 103 114 145 2138

For HDS-25k

+Data 182 142 151 2025
+HR Branch 218 122 185 1975
+Lh 233 127 175 1965
+Le 229 121 199 1951

For HSS-25k

+Data 169 135 201 1995
+HR Branch 202 144 177 1977
+Lh 205 141 193 1961
+Le 226 134 153 1987

For LCS-25k

+Data 179 88 253 1980
+HR Branch 203 99 243 1955
+Lh 192 116 254 1938
+Le 198 110 266 1926

Table 7. Generalizability experiment results. Absolute counts for
each knowledge level across datasets and methods.

E. Generalization
E.1. Generalization beyond landmarks
In this section, we provide a detailed evaluation of EECA’s gen-
eralization capabilities beyond the landmark recognition, specifi-
cally assessing its performance on the iNaturalist2021 dataset [38].

This dataset comprises over 10,000 species, spanning diverse cat-
egories such as plants, insects, birds, and various other organisms,
thus providing a robust benchmark for testing generalization.

Category Reference (BRS) VE-Unknown (LCS) VE-Known (HDS)

Increase (%) 36.36 36.36 70.91

Table 8. Accuracy increase across different data selection meth-
ods. The baseline method (BRS) serves as a reference, while
VE-Known methods (HDS), show significant improvements over
both BRS and VE-Unknown (LCS), highlighting the advantage of
leveraging known visual entities.

Baseline + Data + HR Branch + Le

Accuracy 5.5 10.9 (+5.4) 11.4 (+0.5) 12.5 (+1.1)

Table 9. Ablation study results demonstrating the incremental ef-
fectiveness of EECA components. The integration of additional
data, high resolution branch, and Le each yields measurable per-
formance gains.

Our experiments demonstrate that cognitive misalignment re-
mains a significant challenge across diverse visual recognition
tasks, not limited to landmarks alone. Figure 16 highlights spe-
cific instances where standard visual models struggle to differen-
tiate visually similar species, underlining persistent cognitive mis-
alignment issues. Employing EECA’s annotation and data selec-
tion methodologies on the iNaturalist dataset, we performed com-
prehensive data selection experiments Table 8 and ablation stud-
ies Table 9. Results, as summarized in the provided tables, confirm
that EECA’s data selection strategy significantly improves model
accuracy. These findings suggest that EECA effectively mitigates
cognitive misalignment in complex, real-world classification sce-
narios beyond landmarks.

E.2. Scalability of entity-level annotation
Entity attributes, whether pertaining to biological species, land-
marks, or artifacts, are inherently definable and identifiable across
multiple domains. Large language models (LLMs) pre-trained
on extensive datasets such as Wikipedia, Common Crawl, and
domain-specific corpora possess rich knowledge, which naturally
supports scalable and cost-effective entity-level annotation. To
validate scalability, we also explored open-source LLMs, which
successfully generated discriminative and precise entity annota-
tions (See Figure 16), further reinforcing the approach’s broad ap-
plicability.

E.3. Generalization across architectures
Cognitive misalignment presents a fundamental limitation in large
vision-language models (LVLMs), representing a previously over-
looked source of errors. This issue arises inherently from the mod-
ular design of LVLMs, where the vision encoder, projector, and
LLM components struggle to align representations across modali-
ties. Importantly, Table 10 reveals that this misalignment persists
regardless of the specific vision encoder (e.g., SigLIP, CLIP) or



Do you know the creature Culaea inconstans? Please 
describe the creature.

Culaea inconstans, commonly referred to as the brook 
stickleback, is a diminutive freshwater fish species 
indigenous to North America. It features an elongated, 
somewhat cylindrical body shape characterized by a 
distinctively protruding lower jaw that extends 
beyond the upper jaw. This species typically 
possesses 4 to 6 dorsal spines, forming a unique 
protective mechanism against predators. Its body 
coloration ranges from olive-green to brown, 
adorned with a striking dark lateral stripe. The picture shows a fish. Based on its 

appearance, the following are three possible 
candidate names:     ❌
Three-spined Stickleback
Minnow
Spinyfish
These fish usually live in freshwater 
environments and have similar appearance 
characteristics.

What is the creature shown in the image? 
Give three specific candidate names. Here is some information about this fish:

4 to 6 dorsal spines, Unique defense 
mechanism. Help me identify it again.

Given the additional information about 
the fish possessing 4 to 6 dorsal spines 
and having a unique defense mechanism, 
it is highly likely that the fish in 
question is the Culaea inconstans, 
commonly known as the brook 
stickleback.       ✅

Identify and list 4-6 specific entities that are most distinctive 
for recognizing the Culaea inconstans.

Qwen2.5-1.5B
Instruct

"reddish-brown body", "distinctive dorsal fin", 
"slender, streamlined body","aquatic habitat", 
"predatory behavior", "adaptation to freshwater environments"

"slender, elongated body shape", "dark olive green coloration",
"distinctive black and white stripes along the sides",
"burrowing behavior in soft riverbeds",  "sensory spines for protection"

"Brown or dark brown color", "Specialized gill rakers"
"Euryhaline species",  "freshwater environments"
"Omnivorous diet"Llama-3.2-3B

Instruct

Qwen2.5-3B
Instruct

Figure 16. Left: Illustration of cognitive misalignment where standard visual models struggle to differentiate visually similar species,
exemplified by the case of Culaea inconstans. Right: Even smaller open-source LLMs can generate precise and discriminative entity
annotations, demonstrating the scalability and cost-effectiveness of automated labeling across domains.

language model (e.g., Vicuna, LLaMA), indicating that it is a uni-
versal challenge rather than an architecture-specific bottleneck.

Vision Encoder(VE) LLM LCS BRS LDS

SigLIP-ViT Vicuna-7B 16.16 15.96 17.52
CLIP-ViT LLaMA3-8B 10.68 12.16 12.96

Table 10. Performance comparison of LVLMs with different vi-
sion encoders and language models.
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