
Appendix
A. Proof of the propositions
Proof of Proposition 1:
Given x, let z∗ ∈ C be the point satisfying ∥x −
z∗∥2 = min

z∈C
∥x − z∥2. Define w∗(z) := δ(z − z∗) is

the dirac delta function. Then we have:

min
z∈C

∥x− z∥2 = ∥x− z∗∥2

=
∑
z∈C

∥x− z∥2w∗(z)

⩾ min
w∈W

∑
z∈C

∥x− z∥2w(z).

Moreover, ∀w ∈ W∑
z∈C

∥x− z∥2w(z) ⩾ ∥x− z∗∥2
∑
z∈C

w(z) = ∥x− z∗∥2.

so, we can get:

min
w∈W

∑
z∈C

∥x− z∥2w(z) ⩾ ∥x− z∗∥2.

in conclusion,

min
z∈C

∥x− z∥2 = min
w∈W

∑
z∈C

∥x− z∥2w(z).

Proof of Proposition 2:
Given x, let f(z) := −∥x− z∥2, where z ∈ C. We prove
the following equation:

lim
ε→0+

ε ln

(∑
z∈C

e
f(z)

ε

)
= max

z∈C
f(z).

In subsequent derivations, we denote that fmax = max
z∈C

f(z),

then

ε ln

(∑
z∈C

e
f(z)

ε

)
= fmax + ε ln

(∑
z∈C

e
f(z)−fmax

ε

)
⩽ fmax + ε ln |C|.

thus we have lim
ε→0+

ε ln

(∑
z∈C

e
f(z)

ε dz

)
≤ fmax. Notice

that

ε ln

(∑
z∈C

e
f(z)

ε

)
≥ ε ln

(
e

fmax
ε

)
= fmax,

we get lim
ε→0+

ε ln

(∑
z∈C

e
f(z)

ε

)
≥ fmax. Therefore,

lim
ε→0+

ε ln

(∑
z∈C

e
f(z)

ε

)
= lim

ε→0+
ε ln

(∑
z∈C

e
f(z)

ε

)
= fmax.

It implies that

min
z∈C

∥x− z∥2 = −fmax = − lim
ε→0+

ε ln

(∑
z∈C

e−
∥x−z∥2

ε

)
.

Proof for the strict concavity of minε in Proposition 3:
∀f1, f2 : Ω → R, f1 ̸= f2 and λ ∈ (0, 1):

minε
z∈C

(λf1 + (1− λ)f2)=−εln

{∑
z∈C

e−
λf1(z)+(1−λ)f2(z)

ε

}
.

Using the Hölder inequality, we have:∑
z∈C

e−
λf1(z)+(1−λ)f2(z)

ε =
∑
z∈C

e−
λf1(z)

ε e−
(1−λ)f2(z)

ε

<

(∑
z∈C

e−
f1(z)

ε dz

)λ(∑
z∈C

e−
f2(z)

ε

)(1−λ)

.

so minε
z∈C

(λf1+(1−λ)f2) > λminε
z∈C

(f1)+(1−λ)minε
z∈C

(f2),

which means minε is strictly concave.

Proof of Proposition 3:

Let Mε(f) = ε ln

(∑
z∈C

e
f(z)

ε

)
, then

minε(∥x− z∥2) = −Mε(−∥x− z∥2).

Similar to the above proof of concavity of minϵ, it can get
that functional Mε is convex with respect to f . Next, we
derive the conjugate representation of Mε.

The Fenchel-Legendre transformation of Mε:

M∗
ε(w) :=max

f

{∑
z∈C

f(z)w(z)−ε ln

(∑
z∈C

e
f(z)

ε

)}

=

{
ε
∑

z∈C w(z) lnw(z), w ∈ W,

+∞, else.

where W = {w : C → [0, 1],
∑
z∈C

w(z) = 1}.

Therefore, we can get the twice Fenchel-Legendre trans-
formation:

M∗∗
ε (f)=max

w∈W

{∑
z∈C

f(z)w(z)−ε
∑
z∈C

w(z) lnw(z)

}
.

and the above problem has a closed form solution:

w∗
ε(z) =

e
f(z)

ε∑
z′∈C

e
f(z

′
)

ε

.



Since Mε is convex and continuous, it is equal to its
twice Fenchel-Legendre transformation.

Mε(f)=max
w∈W

{∑
z∈C

f(z)w(z)−ε
∑
z∈C

w(z) lnw(z)

}
.

then we can get:

minε(∥x− z∥2) = −Mε(−∥x− z∥2)

=−max
w∈W

{∑
z∈C

−∥x− z∥2w(z)−ε
∑
z∈C

w(z) lnw(z)

}

= min
w∈W

{∑
z∈C

∥x− z∥2w(z) + ε
∑
z∈C

w(z) lnw(z)

}
.

the minimizer w∗
ε of the right optimization problem is:

w∗
ε(z) :=

e
−∥x−z∥2

ε∑
z′∈C

e
−∥x−z

′
∥2

ε

.

Proof of Proposition 4:
Let fmin = min

z∈C
∥x− z∥2, then

lim
ε→0+

w∗
ε(z) = lim

ε→0+

e
−∥x−z∥2

ε∑
z
′∈C

e
−∥x−z

′
∥2

ε

= lim
ε→0+

e
fmin−∥x−z∥2

ε∑
z
′∈C

e
fmin−∥x−z

′
∥2

ε

= lim
ε→0+

e
fmin−∥x−z∥2

ε

1+
∑

z
′∈C\c(x)

e
fmin−∥x−z

′
∥2

ε

= δ(z − c(x)).

Thus

lim
ε→0+

cε(x) = lim
ε→0+

∑
z∈C

w∗
ε(z)z

=
∑
z∈C

δ(z − c(x))z = c(x).

On the other hand, lim
ε→+∞

w∗
ε(z) =

1
|C| , then

lim
ε→+∞

cε(x) = lim
ε→+∞

∑
z∈C

w∗
ε(z)z

=
∑
z∈C

1
|C|z = ĉ.

B. Proof of the theorems
Proof of Theorem 1:
Proof by contradiction. Suppose S is not a CCS shape with
respect to ∂S. According to Definition 3, this implies that

there exists a point x0 ∈ S,x0 /∈ ∂S and a scalar λ0 ∈ (0, 1)
such that

y0 = (1− λ0)x0 + λ0cε(x0) /∈ S.

Let dS(x) be the Signed Distance Function of set S, de-
fined as follows:

dS(x) =

{
− infz∈∂S ∥x− z∥, x ∈ S,
infz∈∂S ∥x− z∥, x /∈ S.

Now, let f(λ) = dS((1 − λ)x0 + λy0) for λ ∈ [0, 1].
Since dS is continuous, f(λ) is also continuous. Given that
f(0) < 0 and f(1) > 0, there exists some λ1 ∈ (0, 1), such
that

f(λ1) = 0.

Then z0 = (1− λ1)x0 + λ1y0 ∈ ∂S. We can get:

∥x0 − z0∥2 = λ2
1∥x0 − y0∥2

= λ2
1λ

2
0∥x0 − cε(x0)∥2

< ∥x0 − cε(x0)∥2.

which contradicts that cε(x0) is a minimizer when ε → 0+.

Proof of Theorem 2:
We prove it by contradiction. Suppose u−1[γ,+∞) is not a
multi-center star-shape domain.

According to Definition 3, there exists a point x0 ∈
u−1[γ,+∞) and a scalar λ0 ∈ (0, 1) such that

y0 = (1− λ0)x0 + λ0cε(x0) /∈ u−1[γ,+∞)

which implies that u(y0) < γ.
Define f(λ) = u((1 − λ)x0 + λcε(x0)) for λ ∈ [0, 1).

The function f is continuously differentiable, with the deriva-
tive given by

f ′(λ) = ⟨∇u((1− λ)x0 + λcε(x0)),−x0 + cε(x0)⟩.

Let y = (1− λ)x0 + λcε(x0). Then

s(y) = cε(y)− y

= cε(y)− ((1− λ)x0 + λcε(x0))

= (1− λ)(cε(x0)− x0) + cε(y)− cε(x0).

Based on the definition of P, we have ⟨∇u(y), s(y)⟩ ⩾ 0,
which means:

⟨∇u(y), (1− λ)(cε(x0)− x0) + cε(y)− cε(x0)⟩ ⩾ 0.

In fact, when ε → 0+, it is simple to verify cε(y) = cε(x0).
Thus, we can get the following equation when ε is suffi-
ciently small.

⟨∇u((1− λ)x0 + λcε(x0)), cε(x0)− x0⟩ ⩾ 0.

This implies that f ′(λ) ⩾ 0 for all λ ∈ [0, 1). Notably,
f ′(0) corresponds to f ′

+(0). Thus, we concluded that f(λ)
is monotonically increasing for λ ∈ [0, 1). Consequently,
f(λ0) ⩾ f(0) ⩾ γ, which contradicts f(λ0) < γ.

This completes the proof.



C. Details of iterative algorithm Eq. (13)

Once qt+1 is obtained, we minimize the following sub-
problem w.r.t. u to get ut+1:

ut+1 = argmin
u∈[0,1]

{⟨−o, u⟩+H(u)− ⟨qt+1, s · ∇u⟩}

= argmin
u∈[0,1]

{⟨−o, u⟩+H(u)− ⟨qt+1s,∇u⟩}

= argmin
u∈[0,1]

{⟨−o, u⟩+H(u) + ⟨div(qt+1s), u⟩}

= argmin
u∈[0,1]

{⟨−o+ div(qt+1s), u⟩+H(u)}

=
1

1 + exp
(
− o−div(qt+1s)

ξ

) .
here the third equality utilizes divergence-gradient duality.
The last equality can be obtained by solving it using the
following variational method.

Let

E(u) := min
u∈[0,1]

{⟨−o+ div(qt+1s), u⟩+H(u)}.

Let u ∈ [0, 1], ∀v ∈ [0, 1], construct u+tv ∈ [0, 1], calculate
the first-order variation:

dE(u+ tv)

dt
|t=0=⟨v,−o+div(qt+1s)+ξ ln (

u

1− u
)⟩=0.

utilizing the arbitrariness of the test function v, we can get
ut+1 = sigmoid( o−div(qt+1s)

ξ ).
From the iterative equations, for an input image of M×N

resolution, the computational complexity of Algorithm 1 is
O(TMN), where T is the number of iterations.

D. Toy experiments
To verify the effectiveness of Algorithm 1, we conducted the
toy experiments shown in Fig. 6 and Fig. 7.

For these toy experiments, we set the maximum number
of iterations for Algorithm 1 to T = 3000 and the coefficient
ξ = 1. For the experiment in Fig. 7, we set ε = 1, and the
segmentation results demonstrate the effectiveness of our
algorithm.

E. Hyperparameter design and training strategy
The parameter ε of the CCS shape influences the shape field,
which in turn affects the segmentation results, as illustrated
in Fig. 6. To obtain the shape field s in the network with
CCS module, a token is introduced to learn it, as shown in
Fig. 3. Parameters in our CCS network module follow Algo-
rithm 1, with ξ controlling the smoothness of the segmenta-
tion indicator function and the dual step size τq influencing
convergence speed. We found that τq ≤ ξ is required for
algorithm stability. To balance both, we set τq and ξ to 1.

(a) Feature o (b) ε = 0 (c) ε = 1 (d) ε = 5

(e) ε = 10 (f) ε = 20 (g) ε = 25 (h) ε = 30

Figure 6. Segmentation results of Algorithm 1 under different
smoothing levels of the vector field s = cε(x)− x. The red dots
represent two points of multi-point star-shaped prior.

Figure 7. Segmentation results of Algorithm 1 with different center
points. The red dots indicate the provided center points.

All experiments in Sec. 4 were conducted using NVIDIA
GeForce RTX 4090 GPUs, with each dataset experiment
utilizing a single GPU. The batch size was set to 1 for
all datasets. The learning rate for the three medical image
datasets was uniformly set to 0.0001. The ISIC dataset was
trained for 50 epochs, while the Refuge and Kvasir datasets
were trained for 30 epochs each. The Adam optimizer was
employed for all experiments.

F. More ablations
Ablation Study on the Number of CCS Layers: We

also take SAM2 as the backbone to assess the impact of the
number of the CCS layers T on WHU Building dataset. The
results are shown in Tab. 5, and the optimal value of T is
found to be 10 after a comprehensive evaluation.

Table 5. Ablation Study on the Number of CCS Layers on WHU
dataset

WHU

DICE↑ IOU↑ ACC↑
T = 5 93.36 88.72 98.62
T = 10 93.32 88.81 98.62
T = 20 93.26 88.55 98.60
T = 30 93.39 88.74 98.62

Optimal Number of Learnable Layers in CCS Module:



We use SAM2 as the backbone to investigate the impact of
CCS module with different numbers N of learnable layers.
We set the total number of CCS layers T to 10 and conducted
ablation experiments on the WHU Building and Refuge
datasets. The experimental results are shown in Tab. 6.

Table 6. Ablation Study on the Number of Learnable Layers in
CCS Module

Numbers WHU Refuge

DICE↑ IOU↑ ACC↑ DICE↑ IOU↑ ACC↑
N = 10 93.46 88.86 98.64 81.63 69.89 98.29
N = 8 93.51 88.89 98.61 83.76 72.82 98.65
N = 6 93.47 88.97 98.68 81.65 70.09 98.30
N = 4 93.27 88.69 98.64 81.13 69.39 98.21
N = 2 93.35 88.76 98.64 83.21 72.20 98.44

Setting the CCS layer to be learnable can enhance the
module’s flexibility, enabling it to capture complex features.
However, when N is too large, the increased model complex-
ity may lead to overfitting. On the other hand, fixed layers
can provide prior information and impose constraints on the
solution, helping to prevent overfitting. The results indicate
that the performance is optimal when N = 8, suggesting
that this layer distribution achieves a good balance between
flexibility and regularization.

G. Experiments with U-Net[29] as backbone

In this section, we demonstrate the effectiveness of the pro-
posed CCS based on the U-Net [29] framework. We adopt a
simple convolutional layer as the sub-network for predicting
the vector field. The experimental results are shown in Tab. 7.
Fig. 8 provides a visual comparison and demonstration of
the experimental results.

Table 7. Result with U-Net[29] as backbone. Bold texts stand for
the best result.

dataset model DICE↑ IOU↑ ACC↑

WHU
U-Net[29] 90.00 84.05 98.10
CCS loss 90.11 84.16 98.09
CCS module 90.38 84.44 98.10

ISIC
U-Net[29] 82.64 73.61 96.06
CCS loss 83.37 74.39 96.17
CCS module 84.60 76.04 96.30

Refuge
U-Net[29] 60.05 44.84 94.42
CCS loss 61.74 46.77 95.27
CCS module 65.30 50.53 96.23

Kvasir
U-Net[29] 81.71 73.65 94.56
CCS loss 82.74 75.09 94.93
CCS module 81.94 74.21 94.70

The experimental results demonstrate that our proposed
method effectively improves the segmentation performance

of U-Net, especially the CCS module, which shows excellent
segmentation performance across three datasets.



(a) Image (b) Finetuned (c) CCS loss (d) CCS module (e) Image (f) Finetuned (g) CCS loss (h) CCS module

Figure 8. Visual comparison of the experimental results.


