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Supplementary Material

A. Quantitative results

A.1. Quantitative Comparisons on Light Corrup-
tion Data

Tabs. A.1 and A.2 present the CTTA results for Synth4D
to SemanticKITTI-C and nuScenes-C under light corrup-
tion levels, respectively. Our method achieves SOTA per-
formance on both benchmarks. Specifically, for Synth4D
to SemanticKITTI-C, our method achieves SOTA results
across 5 domains, with an average mIoU improvement of
26.46% compared to the source model and 9.42% com-
pared to the previous SOTA method. Similarly, for Synth4D
to nuScenes-C, our method achieves SOTA results across
4 domains, with an average mIoU improvement of 7.91%
over the source model and 2.45% over the previous SOTA
method. These results further demonstrate the superiority
of our approach.

A.2. Results on the inverse order

The results under the reversed perturbation order remain
nearly identical to our original setting, with an average
mIoU of 30.88 compared to 30.82 in our standard setup.
This indicates that the overall performance is largely unaf-
fected by the order of domain shifts. Among all domains,
only Motion Blur and Crosstalk exhibit mIoU differences
greater than 0.2, suggesting that while minor variations ex-
ist, the method maintains consistent adaptation across dif-
ferent perturbation sequences. This highlights the robust-
ness of our approach to domain order, ensuring stable per-
formance regardless of the sequence in which the corrupted
domains appear.

A.3. Results on repeated domains

Tab. A.4 presents the performance over 13 rounds of re-
peated domains. Our method shows continuous improve-
ment as the number of rounds increases, benefiting from

Table A.1. Quantitative comparison of continual test-time adaptation from Synth4D to SemanticKITTI-C under light corruption levels. We
report the mIoU for each domain as well as the average mIoU across all methods. BP refers to backpropagation.

Method DA Type BP Domain mIoUBeam Sensor Crosstalk Fog Echo Motion Snow
PSLabel TTA ✓ 33.00 35.54 29.20 26.09 27.61 25.33 24.72 28.78
TENT[5] TTA ✓ 24.94 18.22 15.97 10.57 7.62 12.68 12.57 14.65
GIPSO[4] 3D TTA ✓ 30.23 25.10 28.97 29.19 31.82 24.18 23.71 27.60
EATA[3] CTTA ✓ 28.48 33.21 31.69 25.16 33.85 30.61 22.14 29.31
ViDA[2] CTTA ✓ 30.40 25.24 26.45 27.10 28.43 19.70 23.67 25.86
Source - ✗ 30.24 24.40 25.73 27.02 28.56 18.18 23.37 25.36
T3A[1] TTA ✗ 31.26 23.83 25.07 26.89 28.14 17.73 23.93 25.26

Ours 3D CTTA ✗ 29.54 33.80 33.20 31.54 36.80 32.75 26.87 32.07

Table A.2. Quantitative comparison of continual test-time adaptation from Synth4D to nuScenes-C under light corruption levels. We report
the mIoU for each domain as well as the average mIoU across all methods. BP refers to backpropagation.

Method DA Type BP Domain mIoUBeam Sensor Crosstalk Fog Echo Motion Snow
PSLabel TTA ✓ 28.00 25.89 26.14 22.01 22.39 21.45 20.22 23.73
TENT TTA ✓ 13.27 5.71 3.95 6.89 5.88 7.68 10.63 7.72
GIPSO 3D TTA ✓ 28.43 27.44 24.20 23.37 32.78 25.90 27.65 27.11
EATA CTTA ✓ 27.96 25.91 26.70 23.78 30.70 28.70 27.35 27.30
ViDA CTTA ✓ 30.83 28.33 20.74 23.21 34.14 19.48 27.35 26.30
Source - ✗ 30.56 28.29 19.77 22.63 34.08 18.94 27.14 25.92
T3A TTA ✗ 29.17 26.74 18.11 21.93 32.79 17.71 26.36 24.69
Ours 3D CTTA ✗ 27.89 26.50 27.91 24.45 31.77 29.14 28.10 27.97



Table A.3. Quantitative results under reverse order

domain Beam Sensor Crosstalk Fog Echo Motion Snow Avg
t −−−−−−−−−−−−−−−−−−−−−−−−−→

forward 29.47 34.56 32.36 26.45 35.34 32.67 24.92 30.82
t←−−−−−−−−−−−−−−−−−−−−−−−−−

inverse 29.66 34.67 32.16 26.30 35.51 32.99 24.98 30.88

Table A.4. Results on repeated domains with 13 rounds

Round 1 4 7 10 13
Ours(w domain) 31.14 31.30 31.37 31.40 31.42

Ours(w/o domain) 31.04 31.00 31.00 30.99 30.99
T3A 24.98 24.98 24.98 24.98 24.98

EATA 29.35 27.68 8.77 3.27 2.54

Table A.5. Results on Synth4D-SemanticKITTI

method source T3A ViDA EATA Ours
mIoU 34.21 34.23 34.23 39.67 40.66

Table A.6. Ablation of K in KNN

K 5 10 20 50 100
mIoU 30.70 30.73 30.82 30.67 30.65

the domain detection module, whereas other methods either
remain unchanged or experience significant performance
degradation.

A.4. Results on Synth4D-SemanticKITTI

We conduct the TTA setting using Synth4D-
SemanticKITTI, and our method still achieves state-
of-the-art performance, with a 18.85% improvement over
the source model and a 2.50% improvement over the
previous SOTA method, EATA, as shown in Tab. A.5.

B. Ablations

B.1. Ablation of K in KNN

As shown in Tab. A.6, selecting a small K increases false
positives in pseudo labels, while a large K results in the
omission of more true positives. The optimal performance
is achieved at K=20.

B.2. Ablation of domain similarity thresholds τc

We test the domain detection accuracy under different do-
main thresholds τc, as shown in the Tab. A.7. Smaller
thresholds fail to effectively distinguish different domains,
while larger thresholds tend to split point clouds within the
same domain into too many separate domains.

Table A.7. Ablation of domain thresholds.

threshold 0.75 0.8 0.85 0.9 0.95
accuracy 58.91 76.13 84.28 78.01 48.05

C. Qualitative Comparisons
Fig. A.1, A.2, and A.3 present visualization results from
the SemanticKITTI-C dataset. We compared the source
model, ground truth, the SOTA BP-free method (T3A), the
SOTA BP method (EATA), and our method. The regions
highlighted in red illustrate the differences in predictions.
It is evident that both EATA and our method significantly
improve the performance of manmade structures and veg-
etation (highlighted in yellow and gray) compared to the
source model and T3A. Additionally, there is a noticeable
improvement in the accuracy of vehicle predictions. Com-
pared to EATA, our method often provides more compre-
hensive predictions for vehicles and manmade structures.

D. Visualizations of Pseudo Labels
Fig. A.4 shows the visualization results of pseudo labels fil-
tered using entropy, probability, and KNN. We ensure that
the number of retained points is consistent across the three
filtering methods. It can be observed that pseudo labels fil-
tered through KNN exhibit better spatial smoothness, ensur-
ing prediction consistency for neighboring points, thereby
achieving improved performance. However, this approach
may inadvertently remove boundary points where different
objects are adjacent. This case represents a limitation of the
current method.
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Figure A.1. Visualization results of the source model, ground truth, T3A, EATA and our method. Regions highlighted in red illustrate the
differences in predictions.
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Figure A.2. Visualization results of the source model, ground truth, T3A, EATA and our method. Regions highlighted in red illustrate the
differences in predictions.
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Figure A.3. Visualization results of the source model, ground truth, T3A, EATA and our method. Regions highlighted in red illustrate the
differences in predictions.



Pr
ed

ic
tio

n
E

nt
ro

py
Pr

ob
ab

ili
ty

K
N

N

Figure A.4. Visualization of source model predictions and pseudo labels filtered by entropy, probability, and KNN. Regions highlighted in
red indicate differences in predictions.
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