Supplementary Material for the Paper “DeformCL: Learning Deformable
Centerline Representation for Vessel Extraction in 3D Medical Image”

1. Dataset Details

We use four datasets to evaluate our proposed framework.
For the HaN-Seg [7] dataset, we randomly split the pub-
licly available 42 CT scans into 31 and 11 images as train
and test data, and the MR images were not used. Left and
right carotid arteries are utilized as segmentation targets. In
the case of the HNCTA dataset containing 358 head and
neck CT scans, clinical experts provide accurate segmen-
tation labels for nine categories of vessels, including the
left and right vertebral arteries (VA), internal carotid arteries
(ICA), common carotid arteries (CCA), posterior communi-
cating arteries (PoCA), and basilar artery (BA). The dataset
is randomly split into 242, 58, and 58 images as train, val-
idation, and test data. For the ASOCA [1, 2] dataset, we
split the dataset randomly into 33 training and 7 testing im-
ages. For the ImageCAS [13] dataset, we fulfill the vessel
category annotations for 350 cases with experienced radiol-
ogists and split it into 235, 50, and 65 for train, validation,
and test data. We evaluate the proposed method on the three
main coronary arteries (LAD, LCX, and RCA) for all CCTA
datasets including ASOCA and ImageCAS.

2. Additional Implementation Details

During the training process, we employ RandomCrop and
RandomFlip as data augmentations to mitigate overfitting,
with consistent settings applied across all methods. For
larger datasets such as ImageCAS [13] and HNCTA, we
train our model and all baselines for 12,000 iterations on
8 NVIDIA GeForce RTX 3090 GPUs. For smaller datasets
like ASOCA [1, 2] and HaN-Seg [7], we train our model
and all baselines for 4,000 iterations. The batch size is
set to 8 by default for all experiments. We utilize the
AdamW Optimizer [5] with a base learning rate of 1 x 1073,
Additionally, we employ a cosine learning rate schedule
with warmup. All models are implemented based on Py-
Torch [6].

We provide the required resources and runtime analusis
on 3D UNet in Table 1, and we can conclude that the in-
crease of DeformCL in resource usage is minimal.

Table 1. Computational costs and runtime analysis.

Method | Params (M) | FLOPs (G) | GPU Memory (MB) | Inference Time (s/img)
SoftDice | 208 | 311 | 3046 \ 0.12
Ours(SoftDice) | 220 | 403 | 3228 | 0.18
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Figure 1. Visualizations of the centerline deformation process on
the ImageCAS dataset. Each row corresponds to a different case,
and each column represents a different deformation stage. The first
subfigure in each row (Stage 0) displays the centerline template
generated using linear interpolation, while subsequent subfigures
show the centerline predictions after deformation stages 1, 2, 3,
and 4, respectively.

3. Analysis of Centerline Deformation Process

We present visualizations of the centerline deformation pro-
cess on the ImageCAS dataset [13], aimed at enhancing un-
derstanding of DeformCL, as depicted in Figure 1. Stage 0
represents the centerline templates generated by linear inter-
polation on control points. It is observed that the core struc-
ture of the centerlines typically stabilizes within the initial
one or two stages, with subsequent stages primarily focused
on refining finer details. Furthermore, we note that the pre-
dicted centerlines naturally possess sufficient smoothness,
which proves beneficial for the subsequent clinical tasks
such as CPR [3] image generation.

4. Additional Experimental Results

For broader comparisons, we include Transformer back-
bones Swin UNETR in Table 2. We also provide more ab-
lation studies as follows.



Table 2. Results of segmentation and centerline on HaN-Seg

dataset with Swin UNETR as backbone.
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Table 3. Ablation on curvilinear interpolation method on HaN-Seg

dataset.
Interpolation Methods Vo.lumetric Score.s %) 1
Dice clDice
B-Spline, 2-order 79.95 88.20
B-Spline, 3-order 79.53 88.10
Linear (Default) 79.58 88.86

Curvilinear Interpolation Method. During adaptive tem-
plate generation, curvilinear interpolation is essential for
generating the initial centerline template based on control
points. In this subsection, we investigate the efficacy of
different interpolation methods, encompassing second- and
third-order B-Spline Interpolation, as well as Linear Inter-
polation, which serves as our default setting owing to its
simplicity. Figure 2 provides an illustration of the afore-
mentioned interpolation methods. Experimental results in
Table 3 demonstrate that different interpolation methods
yield similar performance in vessel segmentation. This sug-
gests that the overall framework is robust to initial tem-
plates, and several deformation stages are adequate to de-
form the centerline templates towards the ground truth cen-
terlines effectively. This observation aligns with the analy-
sis in Section 3 — after the initial one or two stages, the core
structure of centerlines will be stabilized.

Interaction Approach. As discussed in the main paper,
previous methods [8, 9, 11, 12] lack an effective approach
for curvilinear feature aggregation due to their discrete rep-
resentations. In contrast, DeformCL inherently exhibits a
graph structure, enabling point feature interaction along the
tubular curve efficiently. Table 4 compares different inter-
action approaches, including Graph Convolutional Network
(GCN) [4] and Transformer [10]. The results indicate that
the improvement with Transformer is more significant than
with GCN, possibly due to its powerful long-distance mod-
eling capability.

Linear (Default)

Figure 2. Visualization of centerline templates obtained through

different interpolation methods: linear interpolation, second-order
B-Spline, third-order B-Spline.
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Table 4. Ablation on interaction approach on HaN-Seg dataset.

. Volumetric Scores (%) 1
Interaction Approaches - -
Dice clDice
0 78.75 88.40
GCN 78.77 88.61
Transformer (Default) | 79.58 88.86
Label softDice cIDice DSCNet Ours (softDice)
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Figure 3. Additional visualizations of the predictions from differ-
ent methods on 3D medical image datasets. The arrows
point out the areas where previous methods exhibit errors, while
the green arrows point out the improved results from our approach.

5. Additional Qualitative Results

In this section, we provide additional qualitative results in-
cluding the visual comparison of segmentation results and
SCPR images in Figure 3 and Figure 4.

Moreover, we present a failure case involving almost
completely occluded vessels, which are highly challenging
for deep learning models due to their near invisibility. As
shown in Figure 5, our method produces fragmented pre-
dictions. However, it outperforms the previous mask-based
representation, thanks to its continuous property.
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Figure 4. Additional visual comparison of SCPR images recon-
structed from the predictions of UNet and DeformCL. Red trian-

gles

indicate the regions where the vessel predictions by UNet are

not correct, resulting in severe errors on SCPR images, while green
ones indicate the improved results from our DeformCL.
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Figure 5. Performance of centerlines on occluded vessels.
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