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Supplementary Material

Overview
The supplementary material includes sections as follows:
• Section A: Implementation details.
• Section B: Additional analysis on integrating RayDiffu-

sion [41] with MoGe [35].
• Section C: More qualitative comparisons of predicted ge-

ometry and camera poses against baseline methods.
• Section D: Details and evaluation of the sparse-to-dense

training strategy employed in DiffusionSfM.
• Section E: More analysis of the homogeneous represen-

tation.
• Section F: Converting predicted ray origins and endpoints

into camera poses.

A. Implementation Details
Inference. DiffusionSfM utilizes x0-parameterization to
predict clean ray origin and endpoint maps as the model out-
put, employing 100 diffusion denoising timesteps. In Fig. 9,
we evaluate the accuracy of x0-prediction at each timestep
with eight input images on CO3D [21] unseen categories.
Interestingly, we find that DiffusionSfM achieves its most
accurate clean sample predictions at an early timestep (T =
90), rather than at the final denoising step (T = 0). This
observation remains consistent across different numbers of
input images (Zhang et al. [41] also have a similar obser-
vation that early stopping helps improve performance). To
capitalize on this property, we limit inference to 10 denois-
ing steps and use the x0-prediction at T = 90 as the final
output, significantly reducing inference time. Moreover, we
find that the optimal timestep varies across datasets: T = 80
yields the best results on Habitat [24], while T = 70 per-
forms best on RealEstate10k [42].
Resolving Ambiguities in GT. We transform camera poses
so the first camera has an identity rotation and is positioned
at the world origin. For scale, we unproject the first image
in the input views using GT depth and scale the world co-
ordinates so the “median point” lies at a unit distance from
the origin. Our model is trained to conform to this scene
configuration.

B. RD+MoGe Baseline: More Details
To minimize the scale difference for the predicted camera
poses from RayDiffusion [41] and depths from MoGe [35]
to form a single consistent output, we follow these proce-
dures: (1) We match the MoGe depth with the ground-truth
(GT) depth using a 1D optimal alignment (thus giving this

baseline some privileged information). (2) We align the
predicted camera centers from RayDiffusion with GT cam-
eras using an optimal similarity transform. (3) Finally, we
unproject image pixels using the updated camera parame-
ters and the aligned depths. We find that a naive combina-
tion of RayDiffusion and MoGe yields poor Chamfer Dis-
tance, even though RayDiffusion estimates relatively accu-
rate focal length. This is because the MoGe depth estimates
for different input views are inconsistent with each other.
Therefore, to predict consistent 3D geometry from multiple
images, the model must learn to reason over the entire set of
views, rather than relying on mono-depth predictions from
individual images. We also include more visualizations in
Fig. 6, where duplicated structures are observed due to sig-
nificant pose errors or a minor misalignment between views.

C. More Qualitative Comparisons
We include more qualitative comparisons with baselines on
the predicted geometry (Fig. 6) and camera poses (Fig. 7).
Discussion. We show that DiffusionSfM can handle chal-
lenging input images where objects present highly sym-
metric patterns (e.g., the tennis ball example in Fig. 6 and
the donut example in Fig. 7), while RayDiffusion [41] and
DUSt3R [36] fail to predict correct camera poses. Com-
pared to RayDiffusion, our approach leverages the predic-
tion of dense scene geometry (i.e., pixel-aligned ray origins
and endpoints) rather than relying on patch-wise “depth-
agnostic” rays. We find that predicting dense pixel-aligned
outputs improves performance (see Sec. D). When com-
pared to DUSt3R, our model benefits from attending to
all input images simultaneously and utilizing a diffusion
framework to effectively manage the high uncertainties in-
herent to this task. Additionally, we observe that DUSt3R
often predicts precise camera rotations but struggles with
camera centers in many cases (e.g., the keyboard example
in Fig. 6). This observation aligns with our quantitative re-
sults for camera center evaluation, presented in Tab. 1.

D. Sparse-to-Dense Training Details and Eval-
uation

As outlined in Sec. 3.3, we follow a sparse-to-dense strat-
egy to train our model as we find that training the high-
resolution model (i.e., the dense model) from scratch yields
suboptimal performance. We visualize the output of the
sparse model and dense model in Fig. 8. In the following,
we introduce the details of training DiffusionSfM.
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Figure 6. More Qualitative Comparisons on Predicted Geometry and Camera Poses. DiffusionSfM shows superior capabilities in
handling challenging samples, e.g., the skateboard and tennis ball. Additionally, while we observe that DUSt3R can predict highly precise
camera rotations, it often struggles with camera centers (see the keyboard example).

Details. Our model leverages DINOv2-ViTs14 [18] as the
feature backbone and takes 224→224 images as input. This
results in 16 → 16 image patches, each with patch size 14.
We first train a sparse model that outputs patch-wise (i.e.,
16 → 16) ray origins and endpoints. Since the spatial reso-
lution of the ground-truth ray origins and endpoints for the
sparse model aligns with the DINOv2 feature map, we use
a single linear layer to embed the noisy ray origins and end-
points (without spatial downsampling), rather than a convo-

lutional layer as shown in Eq. 5. We also remove the DPT
[20] decoder in our sparse model. Subsequently, we initial-
ize our dense model from the pre-trained sparse model to
predict dense (i.e., 256 → 256) ray origins and endpoints.
We copy-paste the DiT [19] weights from the sparse model.
Whereas for the convolutional layer used to embed ray ori-
gins and endpoints, we duplicate the linear-layer weights by
16→ 16 (as the patch size of the conv-layer is 16) and then
divide them by 256 to account for the patch-wise addition.
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Figure 7. More Qualitative Comparisons on Predicted Camera Poses.

While the DiT in the dense model has learned meaningful
representations, the DPT decoder is initialized from scratch.
To avoid breaking the learned DiT weights in early train-
ing iterations, we freeze its weights while only training the
convolutional embedding layer and the DPT decoder for a
few iterations. This warm-up model is referred to as Dense
Model (1). After that, we train the whole model together,
including the DINOv2 encoder as well (which was frozen
in the previous stage). During this phase, we apply a lower
learning rate (0.1→) to both the DINOv2 encoder and DiT

compared to the DPT decoder. The fully trained model is re-
ferred to as Dense Model (2). We compare the performance
of DiffusionSfM-CO3D at each stage in Tab. 5.

Training Resources. (1) DiffusionSfM-CO3D: We train
the sparse model using 4 H100 GPUs with a total batch size
of 64 for 400,000 iterations, which takes approximately 2
days. To warm up the dense model, we freeze the DiT
weights and train for 50,000 iterations. We then unfreeze
the full model and continue training for another 250,000
iterations on 4 H100 GPUs with a batch size of 48, requir-



Rotation Accuracy (→, @ 15→) Center Accuracy (→, @ 0.1)
# of Images 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Se
en

Sparse Model 92.5 93.1 93.4 93.6 93.6 93.8 93.9 100 95.4 92.6 90.9 89.6 88.8 88.2
Dense Model (1) 90.3 90.7 90.9 90.8 90.9 91.0 90.9 100.0 94.9 91.1 89.0 87.1 85.7 84.2
Dense Model (2) 93.4 94.0 94.5 94.8 95.0 95.2 95.1 100.0 95.9 93.6 92.2 91.2 90.7 90.2

U
ns

ee
n Sparse Model 87.0 89.2 90.2 90.7 91.2 91.7 92.1 100.0 90.9 86.3 83.1 81.0 79.7 79.2

Dense Model (1) 85.9 86.8 87.4 87.8 88.5 88.6 88.8 100.0 89.1 83.7 79.7 77.7 75.5 74.5
Dense Model (2) 90.4 91.2 92.7 93.0 93.1 93.3 93.5 100.0 91.1 87.7 85.3 83.7 82.7 82.0

Table 5. Camera Rotation and Center Accuracy on CO3D at Different Training stages. On the left, we report the proportion of relative
camera rotations within 15→ of the ground truth. On the right, we report the proportion of camera centers within 10% of the scene scale,
relative to the ground truth. To align the predicted camera centers to ground truth, we apply an optimal similarity transform (s, R, t).
Hence the alignment is perfect at N = 2 but worsens with more images.
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Figure 8. Qualitative Comparison of Sparse and Dense Model
Outputs. The sparse model predicts the ray origin and endpoint
for each image patch, limiting its ability to capture the fine-grained
details of the scene.

ing an additional 2 days. (2) DiffusionSfM: This variant
is trained with 8 H100 GPUs and a larger batch size. The
sparse model is trained with a total batch size of 288 for
490,000 iterations over roughly 6.5 days. The dense model
is trained with a batch size of 96 for 800,000 iterations (in-
cluding 50,000 warm-up iterations as well), taking approx-
imately 10.5 days. However, the training beyond 500,000
iterations yields only marginal improvements.

E. The Effect of Homogeneous Representation
To underscore the importance of the proposed homoge-
neous representation for ray origins and endpoints, we train
a variant of DiffusionSfM using these components directly
in R3 (i.e., without using homogeneous coordinates). For
this model, we employ a scale-invariant loss function, as
used in DUSt3R [36]. The training loss curve for this model
is shown in Fig. 10. Notably, the model fails to converge,
with the training loss remaining persistently high. This fail-
ure occurs because our diffusion-based approach assumes
input data within a reasonable range, as the Gaussian noise
added during training has a fixed standard deviation of 1.
Consequently, training scenes with substantial scale differ-
ences across components disrupt the model’s learning pro-
cess. In contrast, employing homogeneous coordinates en-
ables the normalization of the input data to a unit norm,
which not only stabilizes training and facilitates conver-

gence but also provides an elegant representation of un-
bounded scene geometry.

F. Converting Ray Origins and Endpoints to
Camera Poses

The camera centers for each input image are recovered by
averaging the corresponding predicted ray origins. To deter-
mine camera rotations and intrinsics, we follow the method
proposed by Zhang et al. [41], which involves solving for
the optimal homography that aligns the predicted ray di-
rections with those of an identity camera. For additional
details, we refer readers to Zhang et al. [41].



Figure 9. Performance of x0-Prediction on CO3D Unseen Categories across Diffusion Denoising Timesteps (N = 8). The X-axis
represents the diffusion denoising timesteps, with T = 100 indicating predictions starting from Gaussian noise and T = 0 corresponding
to the clean sample. The Y-axis shows the accuracy for camera rotation (blue) and camera center (orange). Notably, DiffusionSfM achieves
peak performance at T = 90. As a result, in inference, we perform only 10 diffusion steps, significantly improving inference speed.

Figure 10. Training Loss Curve for DiffusionSfM without Homogeneous Representation. The X-axis represents training iterations (in
thousands, k), and the Y-axis denotes the loss value. Without incorporating a homogeneous representation for ray origins and endpoints,
the model struggles to train effectively due to significant scale differences across various scene components.
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