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Figure 1. Visual comparisons in the novel trajectories for the Cousin Data Training Strategy (CDTS) ablation study. The orange boxes
emphasize the superior performance of DriveDreamer4D and the further improvements in detail rendering brought by CDTS.

In the supplementary material, we begin by introducing
the three baseline methods employed in our work. Next,
we elaborate on the implementation of DriveDreamer4D,
covering the training for novel trajectory video generation,
the selection of scenes, and the setup of the user study. Fi-
nally, additional visualizations are presented to illustrate the
improved rendering quality achieved through Cousin Data
Training Strategy (CDTS) and showcase the performance
of DriveDreamer4D in speed change scenarios.
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1. Baselines

To demonstrate the effectiveness and generalizability of
our method, three different 4D Gaussian Splatting (4DGS)
baselines are selected for the experiments. In this section,
we briefly introduce the three baselines employed in this
paper: PVG [3], S3Gaussian [5], and Deformable-GS [10].

PVG [3] introduces a unified representation model known
as Periodic Vibration Gaussians (PVGs), which vibrate over
time with optimizable parameters, including vibration di-
rections, lifespan, and life peak (the moment of highest
opacity), to effectively represent dynamic scenes. The
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Scene Start Frame End Frame

segment-10359308928573410754 720 000 740 000 with camera labels.tfrecord 120 159
segment-12820461091157089924 5202 916 5222 916 with camera labels.tfrecord 0 39
segment-15021599536622641101 556 150 576 150 with camera labels.tfrecord 0 39
segment-16767575238225610271 5185 000 5205 000 with camera labels.tfrecord 0 39
segment-17152649515605309595 3440 000 3460 000 with camera labels.tfrecord 60 99
segment-17860546506509760757 6040 000 6060 000 with camera labels.tfrecord 90 129
segment-2506799708748258165 6455 000 6475 000 with camera labels.tfrecord 80 119
segment-3015436519694987712 1300 000 1320 000 with camera labels.tfrecord 40 79

Table 1. Selected scenes from the validation set of the Waymo dataset [8].

Method PSNR ↑ SSIM ↑ LPIPS ↓
PVG 15.73 0.7093 0.2568
DriveDreamer4D with PVG 17.81 0.7601 0.2260

Table 2. PSNR, SSIM and LPIPS scores on EUVS test set.

model employs a self-supervised approach to optimize these
Gaussians and achieves static-dynamic decomposition by
classifying them based on their lifespans. This method al-
lows PVG to effectively represent the characteristics of var-
ious objects and elements in dynamic urban scenes.
S3Gaussian [5] proposes a self-supervised street Gaussian
method to model complex 4D dynamic scenes. Each scene
is represented using 3D Gaussians to preserve explicitness,
and a spatial-temporal field network is employed to com-
pactly model the 4D dynamics. To facilitate efficient scene
reconstruction without costly annotations, it utilizes an self-
supervised approach to decompose dynamic and static 3D
Gaussians.
Deformable-GS [10] represents scenes using a canonical
space defined by Gaussian distributions. It models scene
dynamic by employing a deformation network to predict
offsets for the Gaussian parameters. These offsets adjust the
Gaussians to align with the dynamic elements of the scene.
Additionally, Deformable-GS has demonstrated strong per-
formance in both synthetic and indoor datasets.

2. Implementation Details

In Sec. 2, we primarily introduce the training for novel tra-
jectory video generation, the selection of scenes, and the
details of the user study.
Training for Novel Trajectory Video Generation. As de-
picted in the upper part of Fig. 2 (in the main text), a
controllable driving video generation model is crucial for
producing novel trajectory videos. Specifically, we follow
the approach outlined in [11] to train such a model on the
Waymo dataset [8]. Unlike [11], which focuses on multi-
view video generation using the nuScenes dataset [2], our

Method NTA-IoU ↑ NTL-IoU ↑ FID ↓
PVG 0.256 50.70 105.29
VEGS 0.417 51.95 109.31
FreeVS 0.426 52.08 128.63
DriveDreamer4D with PVG 0.438 53.06 71.52

Table 3. Comparison of NTA-IoU, NTL-IoU and FID scores with
more SOTA methods across lane change on Waymo.

Method Frames Views NTA-IoU ↑ NTL-IoU ↑ FID ↓
PVG 40 3 0.334 52.94 106.91
DriveDreamer4D with PVG 40 3 0.497 55.11 69.48

PVG 100 1 0.320 52.08 86.66
DriveDreamer4D with PVG 100 1 0.508 56.27 65.39

Table 4. Experiments of different frames and views on Waymo.

work concentrates solely on front-view video generation.
This focus allows us to increase the number of frames to
40 and the resolution to 960 × 640, a significant improve-
ment compared to the previous 8 frames at a resolution of
448× 256. The increase in both frame count and resolution
contributes to an enhanced performance of the reconstruc-
tion model, particularly for novel trajectory generation. As
for the training data, it comprises the entire Waymo train-
ing split, consisting of 798 videos. To enhance the dataset,
we further divide these videos into 40-frame clips, resulting
in approximately 64K clips. Additionally, the training pro-
cess is initialized with parameters from SVD [1], with 3D
bounding boxes, HDMaps, and text incorporated as control
conditions. And, the AdamW optimizer [7] is employed for
parameter optimization, with a learning rate of 5 × 10−5,
a batch size of 8, and a total of 50K iterations. All experi-
ments are conducted on an NVIDIA H20 (96GB) GPUs.
Scene Selection. All selected scenes are sourced from the
validation set of the Waymo dataset [8] and are carefully
chosen based on their distinctive characteristics. Specif-
ically, the selection prioritizes scenes that exhibit signifi-
cant motion dynamics, such as large-scale maneuvers, as
these scenarios pose greater challenges for both video re-
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Figure 2. Qualitative comparisons of novel trajectory renderings during lane change scenarios. The orange boxes highlight that Drive-
Dreamer4D significantly enhances the rendering quality across various baselines (PVG [3], S3Gaussian [5], Deformable-GS [10]).

construction and trajectory generation tasks. Tab. 1 shows
all 8 scenes selected for our experiments. The official file
names of these scenes, as provided in [8], are listed along
with their respective starting and ending frames.
User Study. For the eight different scenes mentioned
above, we create 72 comparison videos for the user study,
covering three novel trajectories (acceleration, deceleration,

and lane change) under three different baselines. To ensure
fairness, the baseline and our method were randomly as-
signed to the left or right side of each comparison video.
For each comparison, the participants are asked to choose
the result they deem the most accurate or realistic (either
the left or right side).
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Figure 3. Qualitative comparisons of novel trajectory renderings during speed change scenarios. The orange boxes highlight that Drive-
Dreamer4D significantly enhances the rendering quality across various baseline methods (PVG [3], S3Gaussian [5], Deformable-GS [10]).

3. More Experiments

In this section, our experiments primarily focus on Drive-
Dreamer4D with PVG [3], highlighting key metrics for lane
change trajectories. For the EUVS benchmark [4], we test
on the Level 1 (translation) dataset, as it aligns closely with
our objectives. Tab. 2 demonstrates the impressive results
on extrapolated views. Furthermore, we compare Drive-
Dreamer4D with VEGS [6] and FreeVS [9]. As shown in

Tab. 3, DriveDreamer4D outperforms these SOTA meth-
ods. For expriments of more frames and views, please see
Tab. 4.

4. Visualization

In this part, we present additional visualization results, in-
cluding qualitative analyses from the Cousin Data Training
Strategy (CDTS) ablation study and visual comparisons for



speed change scenarios.
As mentioned in Sec. 4.3 of the main text, we per-

form an ablation study on the CDTS using PVG [3]. For
clarity, DriveDreamer4D in this ablation study refers to
DriveDreamer4D with PVG. As shown in Fig. 1, Drive-
Dreamer4D demonstrates significant improvement over the
baseline methods, regardless of whether CDTS is applied.
Notably, the baseline methods struggle to accurately re-
construct the positions of vehicles in novel trajectories, re-
sulting in severe ghosting artifacts. In contrast, Drive-
Dreamer4D excels at rendering the vehicle positions with
high precision, significantly enhancing rendering perfor-
mance. Moreover, with the introduction of CDTS, Drive-
Dreamer4D further enhances the reconstruction quality of
dynamic vehicles, particularly at the edges, providing more
detailed and accurate representations.

As shown in Fig. 2, we present the novel trajec-
tory view synthesis during lane change. Images ren-
dered by the baseline methods exhibit issues where fore-
ground vehicles incorrectly change lanes in sync with
the camera’s motion, and some vehicles are incompletely
rendered. Additionally, the background is filled with
speckles and ghosting. Especially shown in the right-
most column of Fig. 2, baseline methods often pro-
duce blurred, ghosted foreground vehicles and background
speckles in the sky, alongside blurred lane markings. Our
method, however, significantly improves rendering qual-
ity, as highlighted by the orange boxes, with sharper vehi-
cle contours and reduced background artifacts like speck-
les and ghosting. For more details, please refer to the
file videos/lane change comparison.mp4. More qualita-
tive analysis of novel trajectory view renderings are shown
in Fig. 3, focusing on speed change scenarios. Our
method significantly enhances the positional accuracy of
foreground vehicles and background elements under speed
change scenarios. Specifically, baseline results (PVG [3],
S3Gaussian [5], Deformable-GS [10]) are displayed in rows
1, 3, and 5. It is evident that the baseline methods face chal-
lenges with perspective synthesis in speed-change scenar-
ios, resulting in inaccurate positional shifts (such as blur-
ring or disappearance of foreground vehicles). In contrast,
the integration of DriveDreamer4D enables the 4DGS al-
gorithms to achieve superior spatial consistency and signif-
icantly improved rendering quality, as illustrated by the or-
ange boxes in the Fig. 3. More details can be found in the
file videos/speed change comparison.mp4.
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