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A. Structure of the Decoders in DynRefer
The structure of the decoders in DynRefer is shown in Fig. 1.

i) Image Region Tagging. As shown in Fig. 1(Dtag), the
region representation xv is first mapped to a low-dimension
embedding with a linear projection layer. Meanwhile, pre-
defined 4585 tags are encoded by a frozen CLIP [5] text
encoder and multi-layer perceptrons. Then, a query-based
decoder [11, 20] (“Transformer layers” in Fig. 1) is used
to calculate the confidences of the tags. The ground-truth
tags are parsed from the caption of the referred region as
shown in Fig. 2. Finally, the confidences of the tags are opti-
mized by asymmetric loss [14], which is robust to imprecise
supervision.

ii) Region-text Contrastive Learning. As shown in
Fig. 1(Drtc), it has a similar structure to Dtag . Drtc normal-
izes the outputs from the query-based decoder and projects
them into similarity scores, which are optimized by the pair-
wise Sigmoid loss for Language-Image Pre-training [19].

iii) Language Modeling. As shown in Fig. 1(Dllm), fol-
lowing ControlCap [21], random control words parsed from
the ground-truth captions are combined to a sentence, i.e.,
“white dog, sofa[SEP]”. The sentence is encoded
into the control embedding by the tokenizer and word em-
bedding layer of the large language model. After that, a
learnable memory unit is added to the control embedding.
Finally, the control embedding and the projected region rep-
resentation are concatenated and jointly sent into the large
language model for text generation.

B. Inference with Trained Decoders.
With trained decoders, the region representation xv can be
decoded into region-level language descriptions, including
tags, categories, attributes and captions. Their production
are elaborated below:
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i) tags. The tags of the region are generated by Dtag . Fol-
lowing [4, 20], we use a set of 4585 tags. During inference,
we first query the decoder with the predefined tags to get
the confidences. Then, the tags are filtered by a predefined
tagging threshold.

ii) categories. The category of the region is generated by
Drtc. During inference, we query the decoder with the tem-
plate “a photo of a {cls}” and select the category
with the highest score.

iii) attributes. The attributes of the region are generated
by Drtc. During inference, we first query the decoder with at-
tribute templates following OVAD [1], e.g., “the object
has {attr}”. Then, attributes with high scores are se-
lected as the results.

iv) captions. The caption of the region is generated
by Dllm. During inference, we first use the tags of high
confidence to form a control sentence, i.e., “{tag1},
{tag2}, {tag3}, · · ·, [SEP]”. Then, the control
sentence and the region representation are used to control
the language language model for caption generation.

C. Details of the Control Embeddings
Following ControlCap [21], we introduce control words to
alleviate the caption degeneration issue, which refers to the
fact that pre-trained multimodal models tend to predict the
most frequent captions but miss the less frequent ones. Dur-
ing training, the control words are parsed from the ground-
truth captions (Fig. 2) and are randomly dropped in accor-
dance with a Bernoulli distribution, which is detailed in
Fig. 2. The remaining control words are shuffled and com-
bined with a [SEP] token to form a control sentence, i.e.,
“white dog, sofa[SEP]” in Fig. 1. The sentence is
encoded into the control embedding by the tokenizer and
word embedding layer of the large language model. Dur-
ing inference, we build the control embeddings with high-
confidence tags from the outputs of DynRefer.



Figure 1. The detailed structure of multimodal decoders D∗ of DynRefer. “Proj” is a linear projection layer. “σ” is the sigmoid activation
function. “Memory” is a learnable embedding. The “Transformer Layers” denotes query-based decoders [11, 20] that contains only
cross-attention layers and feed forward networks.

Table 1. Evaluation of the align module of DynRefer on region-level multimodal benchmarks.

Align module Inference Vis. FLOPs
OVAD COCO VG-COCO RefCOCOg

mAP (%) Acc (%) mAP (%) CIDEr METEOR

1 ✗ No prior 790G 27.3 88.4 47.1 17.9 113.6
2 ✓ No prior 792G 27.3 88.9 47.3 18.2 117.7
3 ✗ Image prior 790G 28.1 90.5 46.6 17.7 113.5
4 ✓ Image prior 792G 28.7 90.3 47.4 18.2 118.6

D. Illustration of pHASH operation

The pHASH (Perceptual Hash) operation is a hashing al-
gorithm that generates a "perceptual fingerprint" of an im-
age based on its visual characteristics. The key features of
pHASH operation are summaries as follows:

i) Perceptual Similarity: The pHASH operation is de-
signed to generate similar hash values for visually similar
images. It focuses on the aspects of the image that humans
perceive (e.g., shapes, colors).

ii) Tolerance to Minor Modifications: The pHASH
operation is robust to minor changes like resizing, cropping,
compression, or slight color variations. This tolerance makes
it ideal for detecting duplicates or near-duplicates of images.

iii) Fixed-Length Output: The output of the pHASH
operation is always a fixed-length binary string (e.g., 64 or

128 bits), regardless of the size of the input image. This
makes it easy to compare images of varying sizes.

iv) Fast Computation: The pHASH operation is opti-
mized for speed and is computationally efficient, allowing it
to be used for large amount image comparisons.

E. Detailed Experimental Settings
The detailed model, dataset, evaluation settings of DynRefer
is summarized as follows:

Model implementation. DynRefer is implemented upon
the LAVIS [8] framework, where large language model and
vision resampler are respectively initialized by FlanT5XL [2]
and Q-former [9]. All the sampled views are resized to
224×224 resolution. All models are trained using 8 NVIDIA
A800 GPUs by 5 epochs, with the Adam optimizer where
the batch size is set to 512. The total training time is less



Table 2. Evaluation of the inference strategy of DynRefer on region-level multimodal benchmarks.

Training Inference Vis. FLOPs
OVAD COCO VG-COCO RefCOCOg

mAP (%) Acc (%) mAP (%) CIDEr METEOR

1 Stochastic 2-view No prior 530G 26.1 87.8 46.6 17.9 114.4
2 Stochastic 2-view Image prior 530G 27.5 89.3 46.8 17.9 114.7
3 Stochastic 2-view Task prior 530G 28.1 90.2 47.0 18.1 115.6
4 Stochastic 3-view No prior 792G 27.3 88.9 47.3 18.2 117.7
5 Stochastic 3-view Image prior 792G 28.7 90.3 47.4 18.2 118.6
6 Stochastic 3-view Task prior 792G 29.4 90.4 47.4 18.2 118.3

Table 3. Analysis of parameter composition of DynRefer. Modules that contain very few parameters are omitted for clarity.

ViT Align module Vision Resampler Dtag Drtc CLIP LLM

Trainable ✗ ✓ ✓ ✓ ✓ ✗ ✗

Parameters (%) 23.78 0.20 2.53 0.05 0.05 2.99 68.79
Flops (G) 783.5 2.1 6.4 6.2 0.4 6.5 80.1

Figure 2. Illustration of the generation process of tags and control
words used in DynRefer.

than 20 hours. The initial learning rate is set to 1 × 10−4

with a cosine learning rate decay. The detailed hyperpa-
rameters during training and inference are shown in Tab. 4.

Table 4. Detailed hyperparameters during training and inference.

Training Value

GPUs 8× A800 80G
batch size 512
training epochs 5
learning policy cosine annealing
initial learning rate 1e-4
minimum learning rate 0
weight decay ratio 0.05
warmup steps 5000

Inference Value

number of beams 5
number of views 3 (default)
view selection Image prior (default)

Considering that dense captioning requires the model to ini-
tially generate dense bounding-boxes, we utilize a GRiT [16]
model trained on the VG to acquire object locations. During
the inference stage, we use the bounding boxes and object
scores predicted by GRiT, and then replace its predicted
caption with DynRefer to get the final result.

Datasets. For all tasks, DynRefer is trained using Vi-
sual Genome (VG) [7] and RefCOCOg [17]. For ablation
studies, DynRefer is trained using VG-COCO [15] and Ref-
COCOg [17]. For evaluation, we evaluate the region-level
captioning performance on VG, VG-COCO [15], and Re-
fCOCOg, the open vocabulary attribute detection perfor-
mance on OVAD [1], and the region recognition performance
on COCO [10]

Evaluation Metrics. For region-level captioning, the
METEOR score and CIDEr score are adopted as the evalu-
ation metrics following [3, 13, 18]. For dense captioning,



mean Average Precision (mAP) [6] is adopted as the evalua-
tion metric following [6, 12]. The mAP is calculated across
a range of thresholds for both localization and language ac-
curacy, i.e., the intersection over union (IoU) thresholds (0.3,
0.4, 0.5, 0.6, 0.7) are used for localization and the METEOR
score’ thresholds (0, 0.05, 0.1, 0.15, 0.2, 0.25) is adopted
for evaluating the language generation. Since DynRefer
lacks the capability to perform object detection, we utilize a
GRiT [16] model trained on VG to acquire object locations.
For open vocabulary attribute detection, mAP is adopted
as the evaluation metric following OVAD [1]. For region
recognition, mAP and Accuracy (Acc.) are are adopted as
the evaluation metrics following [3, 22].

F. Additional Experimental Results
We provide additional experimental results in the supplemen-
tary as follows:

Stochastic Multi-view Embedding: Align module. The
effectiveness of the align module is validated in Tab. 1. By
spatially aligning the region embeddings across multiple
views, DynRefer achieves a 0.6% improvement in mAP on
OVAD, a 0.8% improvement in mAP on VG-COCO, and
a 5.1 increase in METEOR on RefCOCOg. These results
validate the effectiveness of the proposed align module.

Selectively Multimodal Referring. As shown in Tab. 2,
we evaluate DynRefer under different view counts and in-
ference strategies. In the "No prior" strategy, views are ran-
domly selected for each sample. In the "Task prior" strategy,
the view containing the referred region is always selected,
and the top-(n-1) views are chosen based on the results from
Fig. 4 for an n-view model. In the "Image prior" strategy,
views are selected according to Eq. 1 in the main paper. For
the 2-view DynRefer model, the performance of different
strategies ranks as: “Task prior > Image prior > No prior”.
For the 3-view model, the ranking is: “Task prior ≈ Image
prior > No prior”. While the “Task prior” strategy works
well, the "Image prior" strategy offers greater flexibility. It
is task-independent and can dynamic select views to each
image region. This makes it particularly suitable for models
that need to handle multiple tasks with a unified region rep-
resentation. Based on these advantages, we adopt “Image
prior” as the default inference strategy.

Statistics of Parameters and FLOPs. The parameter and
flop composition of DynRefer is shown in Tab. 3. DynRefer
has few trainable parameters and can be trained efficiently.

Additional Visualization Results. We provide additional
visualization results of Fig. 5 and Fig. 6 in the main docu-
ment. The results are shown in Fig. 5 and Fig. 3 4 6 7 8.

G. Limitations
Though DynRefer significantly outperforms previous state-
of-the-arts on multiple multimodal tasks, it still doesn’t per-

fectly mimic the visual cognition system of human. A real
human can adjust the resolution of visual inputs in a more
dynamic and flexible way. Better simulation strategy can be
explored in the future work.
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Figure 3. More results of Fig. 6 in the main paper, i.e., illustration of DynRefer’s multi-task capability.

Figure 4. More results of Fig. 6 in the main paper, i.e., illustration of DynRefer’s multi-task capability.
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Figure 5. More results of Fig. 5 in the main paper, i.e., visualization of selected views using image prior.

Figure 6. Illustration of DynRefer’s multi-task capability. It can generate captions, tags, attributes, categories, using a single model, for any
referred regions.
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Figure 7. Illustration of DynRefer’s multi-task capability. It can generate captions, tags, attributes, categories, using a single model, for any
referred regions.



Figure 8. Illustration of DynRefer’s multi-task capability. It can generate captions, tags, attributes, categories, using a single model, for any
referred regions.
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