
A. Model Details
Our model consists of three main components: the GOP encoder, the MLP projector, and a large language model (LLM). In
the GOP encoder, we leverage a pre-trained SigLIP-so400m [13] as the RGB frame encoder. Simultaneously, we utilize a
custom-designed transformer as the motion encoder to extract motion information.

Given that the motion vectors extracted from compressed video streams are represented as a discrete list L:
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we first transform it into a 2D spatial format P as follows:
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Since the motion vector represents displacements for macroblocks of size 4 × 4, and the original frame dimensions are
h× w × 3, we derive a motion matrix of shape (h/2, w/2, 2). Subsequently, the motion matrix is resized to a fixed resolution
of 96× 96, which is corresponding to the frame resolution 384× 384.

We employ a two-layer transformer as the motion encoder, with a hidden size of 256 and 2 channels. The input motion
matrix is processed using patches of size 7× 7. After encoding, the motion feature has the same dimensionality as the frame
feature, ensuring consistency across modalities.

For the extracted motion features, we apply temporal pooling along the time dimension to summarize the temporal
dynamics. Additionally, to reduce the number of input tokens, we perform adaptive pooling on both the frame features and the
motion features. This operation leverages the torch.nn.AdaptiveAvgPool2d module to efficiently compress spatial
dimensions while preserving important information.

Subsequently, we employ a fusion layer to integrate the frame and motion information. This fusion process is implemented
using a cross-attention layer followed by a feed-forward layer to facilitate modality interaction. Additionally, we incorporate a
residual module to retain the input information, ensuring that critical details from both modalities are preserved during the
fusion.

B. Training Hyperparameters
During the first-stage training, we freeze the frame encoder and the large language model (LLM) while training the motion
encoder, the GOP fusion layer, and the modality projector. A global batch size of 128 is used, and the model is trained for
1000 steps. The motion encoder and projector are optimized with a learning rate of 1× 10−4, while the remaining components
are trained with a learning rate of 2× 10−5.

In the second-stage training, we unfreeze all model parameters for joint optimization. The learning rates for different
components are set as follows: the frame encoder uses a learning rate of 2× 10−6, the motion encoder uses 1× 10−5, the
projector uses 1× 10−4, and the remaining components use 2× 10−5. The training is conducted for 2400 steps with a global
batch size of 128.

We employ DeepSpeed ZeRO-2 for distributed training to efficiently handle large-scale models and data. During training,
different samples are packed into a single sequence with a maximum length of 4096 for joint optimization, significantly
improving training efficiency. The training was conducted on 16 NVIDIA A100 GPUs, with a total training time of
approximately 16 hours.

Additionally, the extra motion warmup was conducted on 8 NVIDIA A100 GPUs. During this phase, we utilized a batch
size of 1024 for supervised training with a learning rate of 1× 10−3. The training was performed on the motion vectors of
SSV2 [2] training videos for a total of 30 epochs.

C. MotionBench Details
We used the label set from SSV2 [2] as the initial pool of options. Subsequently, we employed GPT-4o as a teacher model
to filter these 174 options, extracting 114 classes that could be mapped to our predefined four categories: Linear, Curved,
Rotation, and Contact.

To facilitate evaluation, we designed MotionBench as a multi-choice QA task. To increase the task complexity, we identified
three hard negative labels for each category, which were included as confusing options in the QA design. GPT-4o assisted in
selecting these hard negatives. For example, the following represents a set of confusing options:



Confusing Label Sets

"Pouring something out of something"

"Pouring something into something"

"Pouring something onto something"

"Pouring something into something until it overflows"

In addition, considering the limitations of video types in SSV2, we introduced [3, 9] as a supplementary data source. Since
these videos lack initial labels, we utilized GPT-4o to generate dense captions for the videos. These dense captions were then
matched to candidate categories, with the matching process also conducted by GPT-4o.

After the labeling process was completed, we performed a manual screening of the test videos. During this step, we filtered
out incorrectly labeled examples and those that were overly simplistic, such as cases where the answer could be inferred
directly from static images.

Finally, MotionBench comprises 4 distinct classes: Linear, Curved, Rotation, and Contact, containing 800, 500, 300, and
700 samples, respectively. We present the accuracy for each individual class as well as the average accuracy across all four
classes.

D. External Ablations

D.1. Use of Temporal Prompt

When feeding GOPs into the LLM, we added a textual temporal prompt for each GOP, which included its time coordinates.
We found that this simple approach led to a significant performance improvement on long benchmarks, such as VideoMME [1].
However, it had a smaller impact on shorter VideoQA benchmarks, such as MSVD-QA [11] and MSRVTT-QA [11].

Table 1. Impact of temporal prompt. A simple textual temporal prompt proves beneficial for long video tasks, such as VideoMME, but has a
smaller impact on shorter VideoQA tasks, such as MSVD-QA and MSRVTT-QA.

Model MSVD-QA MSRVTT-QA MotionBench VideoMME
Acc. / Score Acc. / Score Avg. w/o sub / w sub

EMA 75.8 / 4.1 58.5 / 3.5 50.0 53.4 / 58.4
EMA w/o Temporal Prompt 75.6 / 4.1 58.5 / 3.5 49.8 51.2 / 56.7

D.2. GOP Token Number

In EMA, we employ a 3×3 pooling kernel to reduce the length of GOP tokens by a factor of 9. In this section, we evaluate the
impact of this compression strategy across several VideoQA benchmarks. We experiment with different pooling kernel sizes
while keeping the rest of the training setup consistent. Our results show that the 3×3 pooling kernel achieves performance
comparable to both the 2×2 pooling and no pooling configurations, while benefiting from a significant reduction in token
length (1/9 of the original), thereby accelerating inference.

Table 2. Influence of pooling strategy.

Pooling Strategy GOP Token MSVD-QA MSRVTT-QA MotionBench VideoMME
Number Acc. / Score Acc. / Score Avg. w/o sub / w sub

w/o pooling 729 76.0 / 4.1 58.9 / 3.5 50.2 53.6 / 58.9
2×2 pooling 196 75.8 / 4.1 58.4 / 3.5 49.7 53.3 / 58.4
3×3 pooling 81 75.8 / 4.1 58.5 / 3.5 50.0 53.4 / 58.4
4×4 pooling 49 73.6 / 3.9 56.8 / 3.3 49.0 52.0 / 56.2



E. Evaluation Results on More Long Video Benchmark
We evaluate our model’s performance on additional long-video benchmarks MLVU [18], LongVideoBench [10], and VN-
Bench [17]. We compare EMA with existing video understanding models. Our model demonstrated outstanding performance
across these benchmarks as well.

Table 3. Evaluation result on long video benchmarks, MLVU [18], LongVideoBench [10] and VNBench [17]

Model MLVU LongVideoBench VNBench
Dev Val Overall

VideoChat [4] 29.2 - -
VideoChatGPT [8] 31.3 - 4.1
Video-LLaVA [6] 47.3 39.1 12.4
Video-LLaMA2 [14] 35.5 - 4.5
LLaMA-VID [5] 33.2 - 7.1
LLaVA-NeXT-Video [16] - 43.5 20.1
ST-LLM [7] - - 22.7
LongVA [15] 56.3 - -
Qwen2-VL-7B [12] 55.6 - 33.9

EMA 57.2 47.0 32.6
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