EgoPressure: A Dataset for Hand Pressure and Pose Estimation
in Egocentric Vision

Supplementary Material

S1. Details about Benchmark Evaluation

In this section, we provide further details about the bench-
mark evaluation experiments from Section 5.

S1.1. Details for image-projected pressure baselines

S1.1.1. Baseline model with Additional Keypoint depth
maps
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Figure S1. Overview of the image-projected pressure baseline
with additional hand pose input. The baseline receives an RGB
image and a keypoint depth map as inputs to an encoder-decoder
segmentation network for pressure estimation.

The previous method [8] for predicting hand pressure
relies solely on RGB images as inputs. In contrast, our new
benchmark is designed to incorporate an additional modality,
hand pose. To ensure a fair comparison between the base-
lines and our approach, we extend the existing method with
additional hand pose inputs. In addition to the three RGB
channels of PressureVision, we add a keypoint depth map as
an additional input channel to the segmentation network.

Encoder-decoder segmentation network architecture.
Similar to PressureVision, we employ an ImageNet-
pretrained Squeeze-and-Excitation Network (SERes-
NeXt50) [15, 16] as the encoder, which takes both RGB and
3D hand pose inputs, and a feature pyramid network [17, 22]
as the decoder, which generates a pressure map.

Training. For training, we use the Adam optimizer with a
batch size of 8. The training process begins with a learning
rate of 0.001 for 100k iterations, followed by 500k iterations
with a learning rate of 0.0001.

S1.1.2. Evaluation Metrics

For evaluation, we adopt the four metrics proposed in Pres-
sureVision [8]: Contact Intersection over Union (IoU), Vol-

umetric IoU, Mean Absolute Error (MAE), and Temporal
Accuracy.

Contact IoU measures the accuracy of contact surface
predictions by calculating the IoU between the estimated
and ground-truth binarized pressure maps. Volumetric loU
extends this by incorporating the accuracy of the predicted
pressure magnitudes, calculated as the ratio of the sum of
the minimum pressure values between the estimated and
ground-truth pressure maps at each pixel to the sum of the
maximum values. MAE quantifies the pressure prediction
error in kilopascals (kPa) per pixel. Temporal Accuracy
assesses the consistency of contact over time by verifying
frame-by-frame contact consistency between the estimated
and ground-truth values.

S1.2. Additional Qualitative Results

More qualitative results for the baselines are provided in
Figure S18. More qualitative examples for the annotations
are shown in Figures S21, S22, S23, S24, S25 and S26.

We also present qualitative results from the third-person
view camera experiments (refer to Table 2 in the main paper).
Figure S19 and S20 include visual comparisons between
our model, which uses RGB and a hand keypoint depth
map, and PressureVisionNet [8] which uses only RGB input.
Figure S19 shows the models’ qualitative performance on
images from cameras 2, 3, 4, and 5, with both models trained
on a separate training set from these views. In Figure S19,
we evaluate the same models on novel views from cameras
1, 6, and 7, which were not included in the training set.

In the second column of Figure S19 and Figure S20, the
reprojected touch sensing area is shown as a white outline to
verify the camera pose. We also provide MAE and Contact
IoU values for each sample. Notably, including additional
hand pose information enhances the model’s ability to es-
timate pressure and contact, especially for occluded hand
parts (see examples 04 in Figure S19 and 09, 11, 13 in Fig-
ure S20).

S1.3. Additional Evaluation of PressureFormer

PressureFormer improves upon the baselines from Sec-
tion 5.1 by estimating pressure directly on the UV map
of the reconstructed hand mesh. This approach extends the
representation of pressure via the estimated 3D hand pose
into 3D space. While the hand mesh-based pressure rep-
resentation can still be projected onto the image plane for
benchmarking with prior methods [8, 9], it offers additional
insights about the specific hand regions applying pressure.
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This capability is beneficial for scenarios involving complex
hand-object interactions, such as when fingers are partially
occluded or interacting with non-planar surfaces, where an
image-projected pressure map may have limitations and in-
troduce additional ambiguities. These tactile hand dynamics
are also helpful for enabling precise grasping and object
manipulation in humanoid robotics.

Evaluation Metrics. In Section 5.2, we compare Pressure-
Former with PressureVisionNet [8] and its hand keypoint
depth map-augmented baseline, both of which directly esti-
mate camera image-projected pressure maps. We make these
comparisons based on the evaluation metrics established in
PressureVision (see Table 2). We extend this evaluation
by considering the hand mesh-projected pressure that Pres-
sureFormer directly estimates as a UV pressure map (see
Figure 9).

To assess the accuracy of pressure estimation across the
hand surface, we compute two metrics on the UV pressure
map: Contact IoU and Volumetric IoU.

Training. During preprocessing, the images are cropped
with a margin around the hand and resized to match the
network’s input dimensions. For evaluation, we ensure the
hand remains centrally positioned in the frame throughout
the cropping process. Data augmentation, including shifts,
rescaling, and rotations, is applied across all methods. Train-
ing employs the Adam optimizer with a batch size of 8, using
a learning rate of 0.001 for 100k iterations and 0.0001 for
the subsequent 500k iterations. The loss function for Pres-
sureFormer (see Eq. 4) uses weighting parameters w; = 0.2
and wo = 0.05.

S2. Details and Evaluation of Annotation
Method

S2.1. Optimization Objectives

In this section, we describe the optimization objectives nec-
essary for complete implementation in conjunction with the
objectives described in the main paper.

S2.1.1. Render Objective

Since hand mesh © is the only rendered object across all
camera views, we use pseudo groundtruth mask M, git from
Segment-Anything (SAM) [20] to extract relevant regions,

appearance Iy, = I} ©® M, and depth D}, = D} © My,

Appearance Loss £ 4 (©)

Depth Volumetric IoU Loss £ p (©)
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Figure S2. Pipeline for projecting the image-based pressure
map (from PressureVision) onto the UV map: Starting with the
predicted hand mesh and 2D pressure map, the normals and z-axis
are inverted to identify occluded (invisible) faces of the mesh. The
pressure is then mapped onto the UV space using rasterization.
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Figure S3. Qualitative examples demonstrating the impact of
coarse UV loss supervision L.. The coarse UV loss supervision
L. prevents the prediction of pressure in areas of the UV map
that are not rendered on the image plane (see Section 5.2). These
regions typically correspond to faces oriented toward the camera,
where pressure and contact are not physically possible.

from input RGB image I, and depth D;.. For the optimiza-
tion of the rendered appearance R%.(®, T'), a single texture
is shared across all camera views within an input batch of
several consecutive frames, which ensures that the mesh ©
remains consistent across different cameras and consecu-
tive frames. The rendering loss L% across all C' cameras is
represented in Eq. S1

Depth Volumetric IoU £ (®) [8] is defined in the third
term of Equation S1. We apply it to the ground truth and ren-
dered depth. In Table S1, we show these two losses: Depth
Volumetric IoU Loss £ (©) and Mask IoU Loss £,(©)
on the mesh from the initial input, i.e., 8;,; and %;,;, and
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Figure S4. Qualitative comparison of UV Pressure. We compare our PressureFormer model against the original PressureVision [8] and its
extended version with additional hand keypoint inputs. For both PressureVision-based approaches, the UV pressure is obtained by baking
the image-based pressure predictions onto the UV map of the hand mesh, using the hand mesh estimates provided by HaMeR [26].

two consecutive annotation stages, POSE OPTIMIZATION
and SHAPE REFINEMENT.

Lp | Ly L
Category Initial Pose. Pose. + Shape. | Initial Pose. Pose. + Shape.
Overall 0.4443  0.1759 0.1317 0.3887 0.1165 0.0558
With Contact 0.4444  0.1752 0.1309 0.3891 0.1167 0.0562
Without Contact | 0.4441  0.1790 0.1351 0.3871 0.1158 0.0545

Table S1. Losses by Stages. We validate the quality of hand poses
using two metrics, Depth Volumetric IoU Loss Lp (Eq. S1) and
Mask IoU Loss £as (Eq. S1), computed on 386,231 x7 (static
cameras) = 2,703,617 annotated frames. Of these, 2,192,633 (81%)
show the hand in contact with the touchpad. We report the results
before (initial) and after each consecutive optimization step: POSE
OPTIMIZATION and SHAPE REFINEMENT.

S2.1.2. Geometry Objective

The geometry objective (Lg) is composed of several terms:

Eg = Einsec + Earap + ['ﬁ + Elap + Eoffset (SZ)

The term L. represents the mesh intersection loss,

which utilizes a BVH tree to identify self-intersections within
the mesh. Penalties are subsequently applied based on these
detections [19, 29].

The term Lgr,p, as-rigid-as-possible loss, as introduced
in [27], promotes increased rigidity in the 3D mesh while
distributing length alterations across multiple edges. The

variation in edge length is determined relative to the mesh
from the last epoch of POSE OPTIMIZATION as

2. 2
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where E(v*,u*) is the edge connecting vertex v* and u*
in the set of all edges F, and the edge e” is formed by the
corresponding vertices v” and u” in the mesh without vertex
displacement D.

The mesh vertices V g+ are smoothed by the Laplacian
mesh regularization Ly, [5], and the normal consistency reg-
ularization L5 smooths normals on the displaced mesh. Fi-
nally, the vertex offset term Lofrse; is calculated by || Dyer||?.

S2.1.3. Depth Culling

In some sequences, hands may be partially occluded by the
Sensel Morph touchpad from certain camera views, which
can hinder the convergence of the optimization process for
the total rendered mask. To address this issue, we have mod-
eled the touchpad and its pedestal. We pre-generate the depth
map D, to represent these scene obstacles. Subsequently,
we perform simple depth culling with the rendered depth
R p by generating a culling mask My, = I(D, > Rp).
This allows us to create cutouts on the rendered depth R p,
the appearance R i, and the mask R 5;, which together rep-
resent the hand parts in front of the scene obstacles. After
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Figure S5. Qualitative evaluation of PressureFormer on di-
verse, real-world examples featuring various objects and scenes.
Despite being trained exclusively on EgoPressure, the model recog-
nizes pressure regions during corresponding contact events, demon-
strating its potential for generalization.

initial tests, we noticed that this depth culling encourages
the intersection of the hand mesh and the touchpad to reach
lower mask IoU loss £,;. Therefore, we add a collision
box of the touchpad into mesh intersection loss L;ysec tO
penalize this intersection. We show an example in Figure S6.

S2.1.4. Temporal Continuity

Our optimization considers consecutive captures consisting
of 7 RGB-D and one pressure frame in batches of size B to
ensure temporal continuity of annotated hand poses across
timestamps. We apply regularization on the approximated
second-order derivative of the hand joint positions J, which

N >

(b) pre-rendered depth  (c) depth culled mask (d) optimized mesh

(a) view from camera 7

Figure S6. Depth Culling. (a) In the view of Camera 7, the thumb
is behind the touchpad. (b) We compare the rendered depth of hand
R p and pre-rendered depth map of scene obstacles D,, and (c)
cutout the part which has a larger depth value than D,. The thumb
rendered in blue color is cutout due to the depth culling. (d) The
collision box is rendered in 3D.

Losses Ours__WioLs wWIoLp Wi Linsee  WI0 Laray _WI0 Liay _WI0 Ly WI0 Logroct
[ 0.1251 0.1404 01797  0.1368 01347  0.13% 01349 0.1477
Ly | 0.0488 00662 00724  0.0619 00597 00654 00653 00728
3Dtpserror [mm] | | 568  7.66 845 7.99 8.61 849 839 8.28

Table S2. Quantitative evaluation of our annotation method
compared to 3D tip positions triangulated from manual an-
notations. We conduct an ablation study for the different loss
terms, including appearance loss £4 (Eq. S1), depth volumetric
IoU loss Lp (Eq. S1), mesh intersection 1oss Liysec (Sec. S2.1.2),
as-rigid-as-possible 10ss Larap (Sec. S2.1.2), Laplacian smooth-
ness Liqp (Sec. S2.1.2), normal consistency regularization Ly
(Sec. S2.1.2), and vertex offset regularization Lo fse¢ (Sec. S2.1.2).
We demonstrate that each loss term contributes to our optimization
performance.

are regressed from the MANO mesh. The temporal continu-
ity regularization is:

B—-2
1
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S2.2. Evaluation of Annotation Fidelity

S2.2.1. Manual Annotation and Inspection

To verify the quality of the hand poses from our annotation
method, we manually annotated 300 randomly selected sets
of 7 static views and one egocentric view (300x8 = 2400
frames). We annotated all the visible nail tips in the cam-
era views, resulting in 7176 2D points. These 2D nail tips
were then triangulated to obtain 3D points. After applying a
threshold of 2 pixels on the re-projection error to exclude in-
consistent manual annotations, we obtained 1114 3D points
that were visible in at least two camera views. In Table S2,
we report the distance error of the hand tips obtained from
our annotation method relative to the 3D tip positions based
on the manual annotations. We also include an ablation
study of our approach. Qualitative results of the manual
annotations and our method are shown in Figure S7.

S2.2.2. Comparison to learning-based model

Compared to the state-of-the-art 3D hand pose estimator,
HaMeR, our optimization-based method offers significant
advantages, enabling the creation of high-quality annotations
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Figure S7. Manual Verification Examples. We demonstrate our
annotation is accurate compared to the manual annotations. (above)
We re-project the triangulated nail tips. We only triangulated them
when they are visible in at least 2 views. (bottom) We re-project
our 3D annotations which also show invisible nail tips as well.

for our dataset. As shown in Figure S9, although hand poses
from HaMeR [26] appear plausible from a top view, side
views expose inaccuracies and scale ambiguities. In con-
trast, our annotation method produces robust and consistent
results across all camera views. In Table 2, we demon-
strate that the baseline model with our high-quality 3D hand
poses improves hand pressure estimation compared to using
HaMeR’s [26] predictions.

To further evaluate annotation quality, we provide the val-
idation results comparing the triangulation of predicted nail
tips with manual annotations across static views in Table S3.
Additionally, Figure S10 presents a qualitative comparison
of pressure estimation incorporating additional poses from
HaMeR [26] and our ground truth annotations. The results
emphasize the importance of the high-fidelity hand pose an-
notations from our optimization method, both quantitatively
and qualitatively, and highlight the necessity of advancing
hand pose and pressure map estimation in future research.

Finally, we report the results of the HaMeR method after
fine-tuning on our dataset in Table S4 and in Figure S8.
Although fine-tuning improves performance, there remains
room for further enhancement. These results establish a
solid baseline for tackling 3D hand pose estimation during
hand-surface interactions in an egocentric view.

3D tips error [mm]  Std.
Ours 5.68 49
HaMeR [26] 12.37 6.3

Table S3. Hand pose verification. Triangulation is performed on
the nail tips using HaMeR [26] predictions across all static cameras,
compared against manual annotations.

A
A2

MPIJPE [mm] Reconstruction Error [mm]
Finetuned HaMeR [26] 10.75 6.10
HaMeR [26] 18.58 8.11

Table S4. Fine-tuning results of HaMeR [26] on EgoPressure
demonstrate improved hand pose accuracy, underscoring the value
of our dataset for 3D hand pose estimation.
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Figure S8. Hand pose prediction and ground truth pose visual-
ization for each camera. We fine-tune HaMeR [26] on our dataset,
demonstrating improved detail in hand pose estimation, particularly
in scenarios where the hand interacts with a surface.

S3. Extended Details about Dataset

S3.1. Details about Gesture Description

Table S5 lists all gestures performed by a participant dur-
ing the data collection, including which hands were used
and how often each gesture was repeated. We refer to the
accompanying video for visual examples.

S3.2. Details about Dataset File Format

For each timestamp, we provide a set of camera frames
(Static Cameras 1 to 7 with a resolution of 2560 x 1440 and
Egocentric Camera of 1920x 1080), where RGB images are
in .jpeg format and depth images [mm] are in intl6 .png
format. The corresponding raw force array is provided in
.bin format.
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Figure S9. Comparison of the estimated hand mesh from HaMeR [26] and our annotation method in both egocentric and exocentric
views. While the projected hand mesh from HaMeR appears visually plausible from an egocentric perspective, observable differences in
hand articulation and mesh deformations become apparent from the exocentric viewpoint of the static cameras.
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Figure S10. Qualitative results of the image-projected baselines on egocentric views, incorporating additional hand pose inputs using
our annotations and predictions from HaMeR [73]. We also reproject the area of the touchpad (indicated by white lines) to verify the
egocentric camera pose.
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Figure S11. Qualitative comparison of reprojected nail tips from
our annotation method (center ) and triangulation of HaMeR [26]
predictions (right). The left column displays the reprojection of
triangulated manually annotated visible tips.

Marker activated

Marker deactivated

Figure S12. Marker visibility in infrared frame of head-mounted
egocentric camera

Gesture Left Hind Right Hand Number of Repetitions
i calibration routine v v -
ii. draw word v v 3
iii. grasp edge curled thumb-down v v 5
iv. grasp edge curled thumb-up v v 5
V. grasp edge uncurled thumb-down v v 5
Vvi. index press high force v v 5
vii. index press low force v v 5
viii. index press no-contact v v 5
iX. index press pull v v 5
X. index press push v v 5
xi. index press rotate left v v S
xii. index press rotate right v v 5
xiii. pinch thumb-down high force v v 5
Xiv. pinch thumb-down low force v v 5
XV. pinch thumb-down no-contact v v 5
XVi. pinch zoom v v 5
Xvii. press cupped onebyone high force v v 3
xviii.  press cupped onebyone low force v v 3
Xix. press fingers high force v v 5
XX. press fingers low force v v 5
XXi. press fingers no-contact v v 5
XXii. press flat onebyone high force v v 3
xxiii.  press flat onebyone low force v v 3
xxiv.  press palm high force v v 5
XXV. press palm low force v v 5
XXvi.  press palm no-contact v v 5
xxvii.  press palm-and-fingers high force v v 5
xxviil.  press palm-and-fingers low force v v 5
XXiX. press palm-and-fingers no-contact v v 5
XXX. pull towards v v 5
XXxi.  push away v v 5
xxxii.  touch iPad v v 3

Table S5. List of gestures performed by a participant during the
data collection.

The poses of the egocentric camera for each timestamp
are stored in a .json file for each sequence. The camera
parameters and poses of all static cameras are provided in a
separate .json meta-configuration file.

Additionally, the meta-configuration file includes basic
information about the participant (gender, height, and age),
handedness used during the task, and lighting conditions
(camera exposure settings and the state of overhead light
tubes).

We varied Kinect camera exposure (2.5 ms vs. 10 ms) and
overhead lighting across three conditions: dark (2 tubes
active, 2.5ms), medium (2 tubes, 10ms), and bright (4
tubes, 10ms). To minimize reliance on shadows, diffuse
light sources were used.

Approximately 89% of timestamps in the dataset include
annotations. For each annotated timestamp, we provide a .pkl
file containing hand pose as MANO parameters (6, /3), global
translation ¢, vertex displacement D, with corresponding
normals 72, and a UV pressure map with a resolution of
224 x224.

S3.3. Dataset Comparisons

Table S6 provides a comprehensive comparison of our pro-
posed dataset. Among existing public datasets focusing
on contact or hand-object pose estimation, EgoPressure is
the first dataset to combine egocentric video data of hand-
surface interactions with ground-truth contact and pressure
information, as well as high-fidelity hand poses and meshes.



real egocentric multiview RGB depth contact pressure

surface  hand

Dataset frames participants hand pose hand mesh markerless
EgoPressure (ours) 4.3M 21 v v
ContactLabelDB [9] 2.9M 51 X X
PressureVisionDB [8] 3.0M 36 X X
ContactPose [1] 3.0M 50 v v
GRAB [28] 1.6M 10 v v
ARCTIC [6] 2.1M 10 v v
H20 [21] 571k 4 v v
Oaklnk [30] 230k 12 v v
OaklInk-2 [31] 4.01IM 9 v v
DexYCB [2] 582k 10 v v
HO-3D [12] 103k 10 v v
TACO [24] 52M 14 v v
Affordpose [18] 26.7k - v v
AssemblyHands [25] 3.03M 34 v X
ContactArt [33] 332k - v v
HOI4D [23] 2.4M 9 v v
YCBAfford [3] 133k - v v
ObMan [14] 154k - v v
FPHAB [7] 100k 6 v X
HA-ViD [32] 1.5M 30 X X
Ego4d [10] 3670 hours 923 X X
EPIC-KITCHEN-100 [4] 20M 37 X X
Ego-Exo4D [11] 1422 hours 740 v X
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Table S6. Comparison between EgoPressure and extended list of hand-contact datasets.

S3.4. Details about Active IR Marker

We use active IR Marker, operating similarly to passive mark-
ers, these markers emit their own infrared light, allowing
for a much smaller and more precise form factor—often ap-
pearing as tiny light dots in the filtered infrared image. This
reduces the impact of lens distortion on tracking accuracy.
Moreover, these markers are programmable, providing cru-
cial control over their activation and deactivation, which is
vital for synchronization within our system. We utilize the
infrared led with large beam angle (see Figure S13) as active
infrared marker.

An asymmetrical layout with markers can be uniquely
identified from any viewpoint within the upper hemisphere
above the marker arrangement. This distinctive configuration
enables robust and accurate real-time tracking using filtered
infrared images, where the markers appear as light dots with
a radius of several pixels. The process is detailed in the
pseudocode presented in Algorithm S1. The effectiveness of
this layout in facilitating accurate marker identification and
pose estimation is further illustrated in Figure S14, where the
spatial arrangement of markers is depicted. Furthermore, this
procedure can be generalized to other asymmetrical layouts.

The Perspective-n-Points (PnP) algorithm is used to com-
pute the camera pose of the egocentric camera based on the
identified markers in the infrared frame. In the experiment,
the reprojection error for pose computed from well-identified
markers remained below an average of 0.4 pixels. To ensure
clarity and reliability in recognition, we applied a threshold
value of 1 pixel to filter out frames potentially containing
ambiguities in marker recognition during the recording. Ad-
ditionally, for frames where tracking was lost, spherical
linear interpolation (Slerp) is employed to estimate camera
pose, thereby maintaining continuity and accuracy in the
tracking data.

le rel - Relative Radiant Intensity
¢ - Angular Displacement

NV

Figure S13. Relative Radiant Intensity vs. Angular Displace-
ment. The marker enable a good visible radiant intensity of beam
angle till 150 degree, which ensures good visibility in egocentric
infrared camera.

S3.5. Details about Devices’ Synchronization in
Dataset Acquisition

The Sensel Morph operates with zero buffer and maintains
a stable 8 ms delay at 120 fps, whereas the Azure Kinect
cameras function at 30 fps, capturing high-resolution RGB
images and a depth map. Due to the high recording perfor-
mance of the Azure Kinect, frames are initially stored in
the device’s cache, making it impractical to rely on the OS
timestamp at the frame’s arrival on the host computer for
synchronization with Sensel Morph pressure data.

All cameras can be externally synchronized via a 30 Hz
triggering signal from the Raspberry Pi CM4, ensuring si-
multaneous frame capture. However, an initial frame loss
(1-3 frames) occurs at the start of recording due to device-
specific issues. Since the absolute value of device ticks has
no inherent meaning, it is unclear how many frames were
lost before the first received frame. Relying on device tick
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Figure S14. Layout of the Active Markers. The indices of the
markers are aligned with the pseudocode provided in Algorithm S1.
Starting from the asymmetrical anchor marker M, all markers can
be identified by computing their relative distances and considering
their spatial relationships.

Algorithm S1 Identify Marker

1: procedure IDENTIFYMARKERS(filtered IR image)

2 Extract marker coordinates (u, v) from the filtered IR image

3: Compute all pairwise distances among markers

4 Identify the pair with the smallest distance, initially labeled as 0
and M

S: Compute the vector from M to O

6: Count the number of markers on each side of the vector line M — 0
7: if more markers lie on the right of the vector then

8: Confirm start point as M, endpoint as 0

9: else
10: Swap, set start point as 0 and endpoint as M
11: end if

12: Identify 2 and 4 as markers aligned with M — 0, on the same side
relative to M

13: Check distances from M to 2 and 4 to determine which is closer

14: Identify L as the marker closest to the line extending through
(0, M, 2,4) and on the same side as 0

15: Compute the centroid of all markers

16: Draw a line from O through the centroid

17: Identify 3 as the marker isolated on its side of the centroid line

18: Identify 5 as the closest marker to the line (0—centroid) not already
labeled

19: Determine 1 and R by their proximity to line (2 — 5), with 1 being
closer

20: end procedure

differences for synchronization could therefore introduce a
misalignment of 1-3 frames between cameras.

To address this, the programmable features of active in-
frared markers and the precise global OS timestamp synchro-
nization (within 1 ms) between the two host computers and
the Raspberry Pi CM4, facilitated by the Precision Time Pro-
tocol (PTP), are utilized. The Raspberry Pi CM4, equipped
with basic electrical components (see Figure S12) at the start
of the next exposure cycle, providing a reliable synchroniza-
tion point that compensates for the initial missing frames.
The exact global OS timestamp of the marker activation is
clearly recorded (see Figure S16).

By calculating the real OS timestamp for all frames based
on the offset from device ticks, starting from the frame
where the marker first appears, precise synchronization is
achieved. This approach effectively aligns RGBD images
and pressure data, optimizing data integration across the
multi-modal sensor system. Moreover, this synchroniza-
tion mechanism using an external active optical identifier is
efficient and economical, making it generalizable to other
multi-sensor systems, such as motion capture systems with
external head-mounted cameras, that rely on different OS
timestamp sources.

GPIO PIN 14

Signal received €«—

GPIO PIN 23

Signal emitted—s

GPIO PIN 18 PWM 0—————

30Hz

Figure S15. Basic Electrical Elements Implementation. We use
a D-type flip-flop and N-channel MOSFET to ensure the IR marker
will be activate by the next beginning of exposure after receiving
signal from PIN 23. And PIN 14 will monitor the activation to
obtain its timestamp.

Camera 1

1
'
'

Camera Egocentric '

IR marker activation

Figure S16. Synchronization Diagram We set head-mounted
egocentric camera to align with 30 Hz triggering signal emitted
by the Raspberry Pi CM4, this signal will also go to PIN 18 as
clock frequency of D-type Flip-flop Fig. S15). Then exposure tcyp
of all cameras is same. The other static cameras 1 to 7 will have
a delay A ¢ to triggering signal to avoid interference of infrared
light. The marker will be activate at to (around 300 milliseconds
after start recording), which we know its global OS timestamp,
then it will be visible to all camera at next exposure cycle. As
verification, we deactivate marker by the very end of recording at
the timestamp ¢1, then the marker will be invisible for all cameras
in the next frame capture. The good synchronization will have
equal frame number between ¢o and ¢; for all cameras.



S4. Limitations

Although EgoPressure serves as a foundational study for un-
derstanding pressure from an egocentric view, several chal-
lenges remain unresolved. These challenges are categorized
into three main areas.

First, measuring pressure while interacting with general
objects presents a challenge. Our current data capture is
confined to sensing pressure on flat surfaces. While we are
optimistic that future research will expand to include a wider
variety of objects, sensing pressure on arbitrary surfaces
poses significant challenges, as it would require extensive
instrumentation of the user’s hands, hindering natural inter-
action and introducing visible artifacts in the captured data.
Instrumenting objects for pressure sensing remains an on-
going research area, with recent advancements primarily in
basic contact detection [1]. However, we anticipate that our
annotation method will extend naturally to more complex
objects and interactions as these challenges are addressed.
PressureVision++ [9] explores weak labels to infer pressure
on more complex objects. However, it only considers fin-
gertip interactions and its evaluation of pressure regression
remains limited to flat surfaces due to the challenges of ac-
quiring precise pressure. We present a qualitative evaluation
of PressureFormer on a wider variety of objects in Figure S5.

Second, the current dataset was only captured in an indoor
setting. Our data capture setup is optimized for acquiring
high-fidelity annotations of hand-surface interactions. To in-
crease the diversity of background environments to improve
generalization to real-world settings, we have added green
overlays to the background of our data capture rig and to
the pressure pad. This allows for background replacement
(see Figure S17) and has been successfully demonstrated to
enhance commercial in-the-wild hand tracking [13, 34].

Finally, the current setup only considers single-hand in-
teractions. Incorporating scenarios involving the use of both
hands would be a natural extension of our work.

Further addressing these challenges in future research
would improve pressure estimation in real-world scenarios
and broaden its applicability.

Crop Mask&Pad Area  Example 1 Example 2 Example 3
Figure S17. Examples of background augmentation using hand

masks and a touchpad.

S5. Ethical Considerations

The recording and use of human activity data involve im-
portant ethical considerations. The EgoPressure project has
received approval from ETH Ziirich Ethics Commission as
proposal EK 2023-N-228. This approval includes both the
data collection and the public release of the dataset. All par-

ticipants provided explicit written consent for recording their
sessions, creating the dataset, and releasing it (see accom-
panying consent form). All demographic information (such
as sex, age, weight, and height) along with the sensor and
video data are pseudonymized, assigning a numeric code to
each participant. Personal data (sex, age, weight, and height)
is stored separately from the sensor and video data, and is
accessible only to the primary researchers involved in the
study. We have not captured or stored any images of the
participant’s face.
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Figure S18. Qualitative comparison of pressure maps inferred using PressureVisionNet [8] and our trained model with additional hand
poses as input on representative cases across various gestures. The bottom table presents MAE [Pa] and Contact IoU [%] for pressure maps
inferred using PressureVisionNet [1] and our trained model on selected samples shown in the Figure.
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Figure S19. Comparison of pressure maps estimated by PressureVisionNet [8] and our adapted model, using separate training and
validation sets, both consisting of images from camera views 2, 3, 4, and 5.
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Figure S20. Comparison of pressure maps estimated by PressureVisionNet [8] and our adapted model, evaluated using input images from
cameras 1, 6, and 7. The models are the same as in Figure S19, which are trained on images from camera views 2, 3, 4, and 5.
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Figure S21. Example of Annotation 1. Right hand with gesture: grasp edge with uncurled thumb down.
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Figure S22. Example of Annotation 2. Left hand with gesture: index press with high force.
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Figure S23. Example of Annotation 3. Left hand with gesture: pinch thumb down on the edge with high force.

a) Camera 1 b c) Camera 3
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(e) Camera 5 (f) Camera 6 (h) Egocentric Camera

(j) Pressure texture (k) Pressure on hand

Figure S24. Example of Annotation 4. Right hand with gesture: grasp edge with curled thumb up.
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Figure S25. Example of Annotation 5. Right hand with gesture: pinch finger zoom in and out.
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Figure S26. Example of Annotation 6. Left hand with gesture: pull all fingers towards the participant.
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